English

Find dydxdydx if xx+yy=aa - Mathematics and Statistics

Advertisements
Advertisements

Question

Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`

Sum

Solution

`xsqrt(x) + ysqrt(y) = asqrt(a)`

∴ `x^(3/2) + y^(3/2) = a^(3/2)`
Differentiating both sides w.r.t. x, we get
`(3)/(2).x^(1/2) + (3)/(2).y^(1/2)"dy"/"dx"` = 0

∴ `(3)/(2).y^(1/2)"dy"/"dx" = -(3)/(2)x^(1/2)`

∴ `"dy"/"dx" = (-x^(1/2))/(y^(1/2)`

= `-sqrt(x/y).`

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.3 [Page 40]

RELATED QUESTIONS

If y = eax. cos bx, then prove that

`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0


If y = log (cos ex) then find `"dy"/"dx".`


Find `dy/dx if x + sqrt(xy) + y = 1`


Find `"dy"/"dx"`If x3 + x2y + xy2 + y3 = 81


Find `"dy"/"dx"` if cos (xy) = x + y


Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`


Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9 


Find `"dy"/"dx"` if, y = log(log x)


Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`


Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`


Choose the correct alternative.

If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`


If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`


Fill in the Blank

If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________


The derivative of f(x) = ax, where a is constant is x.ax-1.


State whether the following is True or False:

The derivative of polynomial is polynomial.


`d/dx(10^x) = x*10^(x - 1)`


Solve the following:

If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"` 


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x  – x2.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`


Find `"dy"/"dx"`, if y = `2^("x"^"x")`.


Differentiate `"e"^("4x" + 5)` with respect to 104x.


If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______


If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______


If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______


If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x


If y = `1/sqrt(3x^2 - 2x - 1)`, then `("d"y)/("d"x)` = ?


State whether the following statement is True or False:

If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a


Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`


If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______ 


Derivative of ex sin x w.r.t. e-x cos x is ______.


If y = (sin x2)2,  then `("d"y)/("d"x)` is equal to ______.


If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.


Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]


If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`


Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`


If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`


If f(x) = |cos x – sinx|, find `"f'"(pi/6)`


If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.


Differentiate the function from over no 15 to 20 sin (x2 + 5)


y = sin (ax+ b)


If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.


If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.


If y = 2x2 + a2 + 22 then `dy/dx` = ______.


Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


Solve the following:

If y = `root5 ((3x^2 + 8x + 5)^4 ,)  "find"  "dy"/ "dx"`


Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`


Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`


If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find the rate of change of demand (x) of acommodity with respect to its price (y) if

`y = 12 + 10x + 25x^2`


Solve the following:

If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`


If x = Φ(t) is a differentiable function of t, then prove that:

`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`

Hence, find `int(logx)^n/x dx`.


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find `dy/dx` if, y = `e^(5x^2-2x+4)`


If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`


Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`


If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`


Find `dy/dx` if, `y = e^(5x^2 - 2x +  4)`.


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×