Advertisements
Advertisements
Question
Choose the correct alternative.
If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`
Options
`("x"^2 - 1)/(2"x"^2sqrt("x"^2 + 1))`
`(1 - "x"^2)/(2"x"^2("x"^2 + 1))`
`("x"^2 - 1)/("2x"sqrt"x"sqrt("x"^2 + 1))`
`(1 - "x"^2)/("2x"sqrt"x"sqrt("x"^2 + 1))`
Solution
`("x"^2 - 1)/("2x"sqrt"x"sqrt("x"^2 + 1))`
Explanation:
y = `sqrt("x" + 1/"x")`
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = 1/(2sqrt("x" + 1/"x")) * "d"/"dx" ("x" + 1/"x")`
`= 1/(2sqrt(("x"^2 + 1)/"x")) * (1 - 1/"x"^2)`
`= sqrt"x"/(2sqrt("x"^2 + 1)) * (("x"^2 - 1)/"x"^2)`
`= ("x"^2 - 1)/("2x"sqrt"x"sqrt("x"^2 + 1))`
APPEARS IN
RELATED QUESTIONS
If y = log (cos ex) then find `"dy"/"dx".`
Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`
Find `"dy"/"dx"` if xey + yex = 1
Find the second order derivatives of the following : e2x . tan x
Find `"dy"/"dx"` if, y = log(log x)
Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`
State whether the following is True or False:
The derivative of polynomial is polynomial.
Solve the following:
If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"`
Differentiate `"e"^("4x" + 5)` with respect to 104x.
If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`
Suppose y = f(x) is a differentiable function of x on an interval I and y is one – one, onto and `("d"y)/("d"x)` ≠ 0 on I. Also if f–1(y) is differentiable on f(I), then `("d"x)/("d"y) = 1/(("d"y)/("d"x)), ("d"y)/("d"x)` ≠ 0
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]
Differentiate `sqrt(tansqrt(x))` w.r.t. x
lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:
`dy/dx = dy/(du) xx (du)/dx`
Hence, find `d/dx[log(x^5 + 4)]`.
If y = `tan^-1((6x - 7)/(6 + 7x))`, then `dy/dx` = ______.
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`
Find `dy/dx` if, `y = e^(5x^2 - 2x + 4)`.
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.