Advertisements
Advertisements
Question
Solve the following:
If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"`
Solution
y = (6x3 - 3x2 - 9x)10
Differentiating both sides w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[(6"x"^3 - 3"x"^2 - 9"x")^10]`
`= 10(6"x"^3 - 3"x"^2 - 9"x")^9 xx "d"/"dx" (6"x"^3 - 3"x"^2 - 9"x")`
`= 10(6"x"^3 - 3"x"^2 - 9"x")^9 xx [6(3"x"^2) - 3("2x") - 9]`
∴ `"dy"/"dx" = 10(6"x"^3 - 3"x"^2 - 9"x")^9 * (18"x"^2 - 6"x" - 9)`
Notes
The answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`
Find `"dy"/"dx"` if ex+y = cos(x – y)
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9
Differentiate `"e"^("4x" + 5)` with respect to 104x.
If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______
Choose the correct alternative:
If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?
If y = x10, then `("d"y)/("d"x)` is ______
If y = x2, then `("d"^2y)/("d"x^2)` is ______
Derivative of ex sin x w.r.t. e-x cos x is ______.
If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`
If f(x) = |cos x|, find f'`((3pi)/4)`
If y = log (cos ex), then `"dy"/"dx"` is:
y = sin (ax+ b)
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
Let f(x) = x | x | and g(x) = sin x
Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.
Statement II gof is twice differentiable at x = 0.
Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Find the rate of change of demand (x) of acommodity with respect to its price (y) if
`y = 12 + 10x + 25x^2`
Find `dy/dx` if, `y=e^(5x^2-2x+4)`