हिंदी

Solve the following: If y = (6x3 - 3x2 - 9x)10, find dydx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following:

If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"` 

योग

उत्तर

y = (6x3 - 3x2 - 9x)10 

Differentiating both sides w.r.t. x, we get

`"dy"/"dx" = "d"/"dx"[(6"x"^3 - 3"x"^2 - 9"x")^10]`

`= 10(6"x"^3 - 3"x"^2 - 9"x")^9 xx "d"/"dx" (6"x"^3 - 3"x"^2 - 9"x")`

`= 10(6"x"^3 - 3"x"^2 - 9"x")^9 xx [6(3"x"^2) - 3("2x") - 9]`

∴ `"dy"/"dx" = 10(6"x"^3 - 3"x"^2 - 9"x")^9 * (18"x"^2 - 6"x" - 9)`

shaalaa.com

Notes

The answer in the textbook is incorrect.

  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Differentiation - MISCELLANEOUS EXERCISE - 3 [पृष्ठ १००]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q IV] 1) | पृष्ठ १००

संबंधित प्रश्न

Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`


Find `"dy"/"dx"` if xey + yex = 1


Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`


If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.


If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______


If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost


State whether the following statement is True or False:

If y = ex, then `("d"^2y)/("d"x^2)` = ex 


Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10 


Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`


If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______ 


If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______ 


If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.


Differentiate `sqrt(tansqrt(x))` w.r.t. x


If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.


Let f(x) = x | x | and g(x) = sin x

Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.

Statement II gof is twice differentiable at x = 0.


Find `dy/dx` if ,

`x= e^(3t) , y = e^(4t+5)`


If x = Φ(t) is a differentiable function of t, then prove that:

`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`

Hence, find `int(logx)^n/x dx`.


If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that

`dy/dx = dy/(du) xx (du)/dx`

Hence find `dy/dx` if y = log(x2 + 5)


Solve the following:

If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`


Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×