Advertisements
Advertisements
प्रश्न
Solve the following:
If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"`
उत्तर
y = (6x3 - 3x2 - 9x)10
Differentiating both sides w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[(6"x"^3 - 3"x"^2 - 9"x")^10]`
`= 10(6"x"^3 - 3"x"^2 - 9"x")^9 xx "d"/"dx" (6"x"^3 - 3"x"^2 - 9"x")`
`= 10(6"x"^3 - 3"x"^2 - 9"x")^9 xx [6(3"x"^2) - 3("2x") - 9]`
∴ `"dy"/"dx" = 10(6"x"^3 - 3"x"^2 - 9"x")^9 * (18"x"^2 - 6"x" - 9)`
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`
Find `"dy"/"dx"` if xey + yex = 1
Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.
If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
State whether the following statement is True or False:
If y = ex, then `("d"^2y)/("d"x^2)` = ex
Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______
If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
Differentiate `sqrt(tansqrt(x))` w.r.t. x
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
Let f(x) = x | x | and g(x) = sin x
Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.
Statement II gof is twice differentiable at x = 0.
Find `dy/dx` if ,
`x= e^(3t) , y = e^(4t+5)`
If x = Φ(t) is a differentiable function of t, then prove that:
`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`
Hence, find `int(logx)^n/x dx`.
If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that
`dy/dx = dy/(du) xx (du)/dx`
Hence find `dy/dx` if y = log(x2 + 5)
Solve the following:
If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`