Advertisements
Advertisements
प्रश्न
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.
उत्तर
y = `root(5)((3"x"^2 + 8"x" + 5)^4)`
∴ y = `(3"x"^2 + 8"x" + 5)^(4/5)`
Differentiating both sides w.r.t. x, we get
`"dy"/"dx" = "d"/"dx" [(3"x"^2 + 8"x" + 5)^(4/5)]`
`= 4/5(3"x"^2 + 8"x" + 5)^(-1/5) * "d"/"dx" (3"x"^2 + 8"x" + 5)`
`= 4/5(3"x"^2 + 8"x" + 5)^(-1/5) * [3(2"x") + 8 + 0]`
∴ `"dy"/"dx" = 4/5(3"x"^2 + 8"x" + 5)^(-1/5) * (6"x" + 8)`
APPEARS IN
संबंधित प्रश्न
if `y = tan^2(log x^3)`, find `(dy)/(dx)`
If y = log (cos ex) then find `"dy"/"dx".`
Find `"dy"/"dx"` if xey + yex = 1
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
Choose the correct alternative.
If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`
If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______
If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`
Suppose y = f(x) is a differentiable function of x on an interval I and y is one – one, onto and `("d"y)/("d"x)` ≠ 0 on I. Also if f–1(y) is differentiable on f(I), then `("d"x)/("d"y) = 1/(("d"y)/("d"x)), ("d"y)/("d"x)` ≠ 0
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b)) tan x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
Derivative of ex sin x w.r.t. e-x cos x is ______.
If y = log (cos ex), then `"dy"/"dx"` is:
Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`
If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`.
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`
Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.