Advertisements
Advertisements
प्रश्न
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.
उत्तर
y = `root(5)((3"x"^2 + 8"x" + 5)^4)`
∴ y = `(3"x"^2 + 8"x" + 5)^(4/5)`
Differentiating both sides w.r.t. x, we get
`"dy"/"dx" = "d"/"dx" [(3"x"^2 + 8"x" + 5)^(4/5)]`
`= 4/5(3"x"^2 + 8"x" + 5)^(-1/5) * "d"/"dx" (3"x"^2 + 8"x" + 5)`
`= 4/5(3"x"^2 + 8"x" + 5)^(-1/5) * [3(2"x") + 8 + 0]`
∴ `"dy"/"dx" = 4/5(3"x"^2 + 8"x" + 5)^(-1/5) * (6"x" + 8)`
APPEARS IN
संबंधित प्रश्न
if `y = tan^2(log x^3)`, find `(dy)/(dx)`
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Find the second order derivatives of the following : xx
If y = `1/sqrt(3x^2 - 2x - 1)`, then `("d"y)/("d"x)` = ?
Choose the correct alternative:
If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?
If y = x10, then `("d"y)/("d"x)` is ______
State whether the following statement is True or False:
If y = ex, then `("d"y)/("d"x)` = ex
If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______
Differentiate `sqrt(tansqrt(x))` w.r.t. x
Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`
If f(x) = |cos x|, find f'`((3pi)/4)`
If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.
If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.
Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`
Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`