मराठी

Find dddydx, if y = tan-1(3x-x31-3x2),-13<x<13 - Mathematics

Advertisements
Advertisements

प्रश्न

Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`

बेरीज

उत्तर

Put x = tan θ

Where `(-pi)/6 < θ < pi/6`

Therefore, y = `tan^-1 ((3tan theta - tan^3theta)/(1 - 3 tan^2theta))`

= `tan^-1 (tan 3theta)`

= 3θ  ...`(because (-pi)/2 < 3theta < pi/2)`

= 3tan–1x

Hence, `("d"y)/("d"x) = 3/(1 + x^2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity And Differentiability - Solved Examples [पृष्ठ ९४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 5 Continuity And Differentiability
Solved Examples | Q 10 | पृष्ठ ९४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`


Find `"dy"/"dx"` if cos (xy) = x + y


Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`


Find `"dy"/"dx"` if, y = log(log x)


Choose the correct alternative.

If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`


If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`


`d/dx(10^x) = x*10^(x - 1)`


Find `"dy"/"dx"`, if y = `2^("x"^"x")`.


If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______


If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______


Suppose y = f(x) is a differentiable function of x on an interval I and y is one – one, onto and `("d"y)/("d"x)` ≠ 0 on I. Also if f–1(y) is differentiable on f(I), then `("d"x)/("d"y) = 1/(("d"y)/("d"x)), ("d"y)/("d"x)` ≠ 0


Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`


Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`


If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______ 


If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______ 


Derivative of ex sin x w.r.t. e-x cos x is ______.


`"d"/("d"x) [sin(1 - x^2)]^2` = ______.


If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`


If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)` 


If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.


Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.


Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`


Find `dy/dx` if, y = `e^(5x^2-2x+4)`


If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.


If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that

`dy/dx = dy/(du) xx (du)/dx`

Hence find `dy/dx` if y = log(x2 + 5)


Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`


Solve the following:

If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`


If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`


Find `dy/dx` if, `y = e^(5x^2 - 2x +  4)`.


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×