Advertisements
Advertisements
प्रश्न
If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`
उत्तर
Given that ex + ey = ex+y.
Differentiating both sides w.r.t. x, we have
`"e"^x + "e"^y ("d"y)/("d"x) = "e"^(x + y) (1 + ("d"y)/("d"x))`
or `("e"^y - "e"^(x + y)) ("d"y)/("d"x) = "e"^(x + y) - "e"^x`
Which implies that `("d"y)/("d"x) = ("e"^(x + y) - "e"^x)/("e"^y - "e"^(x + y))`
= `("e"^x + "e"^y - "e"^x)/("e"^y - "e"^x - "e"^y)`
= –ey–x.
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation:
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1
Find the second order derivatives of the following : e4x. cos 5x
Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`
Find `"dy"/"dx"` if, y = log(log x)
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Choose the correct alternative.
If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`
If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`
Solve the following:
If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"`
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.
Find `"dy"/"dx"`, if y = xx.
If y = sec (tan−1x) then `("d"y)/("d"x)` at x = 1 is ______.
If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______
If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b)) tan x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______
If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.
Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]
Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`
If f(x) = |cos x|, find f'`((3pi)/4)`
y = `cos sqrt(x)`
Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:
`dy/dx = dy/(du) xx (du)/dx`
Hence, find `d/dx[log(x^5 + 4)]`.
Solve the following:
If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`
If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that
`dy/dx = dy/(du) xx (du)/dx`
Hence find `dy/dx` if y = log(x2 + 5)
If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`
Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`
Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`
If `y = root{5}{(3x^2 + 8x + 5)^4}, "find" dy/dx`.