Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1
उत्तर
x2 dy + (xy + y2) dx = 0
⇒ x2 dy = -(xy + y2 ) dx
⇒ `(dy)/(dx) = - ((xy + y^2))/x^2`
Let y = vx
`(dy)/(dx) = v + x (dv)/(dx)`
`v + x (dv)/(dx) = - ((vx^2 + v^2 x^2))/x^2`
`v + x (dv)/(dx) = - (v + v^2)`
` x (dv)/(dx) = - 2v - v^2`
⇒ `(dv)/(v^2 + 2v) = - (dx)/x`
⇒ `(dv)/(v^2 + 2v) + (dx)/x = 0`
⇒ ` int_ (dv)/((v + 1)^2 - (1)^2) + int_ (dx)/x = 0`
⇒ `(1)/(2) log |[ v+ 1 -1]/[v + 1 + 1]| + log x = c`
⇒ ` log |[ v]/[ v + 2]| + 2 log x = 2c`
⇒ ` log |[ vx^2]/[ v + 2]| = 2c`
⇒ ` |[ vx^2]/[ v + 2]| = e^2c`
⇒ ` ( vx^2)/( v + 2) = ± e^2""^c = "A" ("say")`
⇒ `(yx)/(y/2 + 2) = "A"`
⇒ `x^2y = "A" (y + 2x)`
Now, when y = 1, x = 1
⇒ 1 = A (3)
⇒ A = `(1)/(3)`
∴ `y + 2x = 3x^2y`
APPEARS IN
संबंधित प्रश्न
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Find the second order derivatives of the following : xx
Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`
Find `"dy"/"dx"` if, y = log(log x)
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
Fill in the Blank
If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`
If y = x10, then `("d"y)/("d"x)` is ______
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`
If y = (sin x2)2, then `("d"y)/("d"x)` is equal to ______.
If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`
If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`
If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.
If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
The differential equation of (x - a)2 + y2 = a2 is ______
lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:
`dy/dx = dy/(du) xx (du)/dx`
Hence, find `d/dx[log(x^5 + 4)]`.
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
If y = `tan^-1((6x - 7)/(6 + 7x))`, then `dy/dx` = ______.
Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`
Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`