मराठी

Solve the Following Differential Equation: X2 Dy + (Xy + Y2) Dx = 0, When X = 1 and Y = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation: 
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1

बेरीज

उत्तर

x2 dy + (xy + y2) dx = 0

⇒ x2 dy = -(xy + y2 ) dx

⇒ `(dy)/(dx) = - ((xy + y^2))/x^2`

Let y = vx

`(dy)/(dx) = v + x  (dv)/(dx)`

`v + x  (dv)/(dx) = - ((vx^2 + v^2 x^2))/x^2`

`v + x  (dv)/(dx) = - (v + v^2)`

` x  (dv)/(dx) = - 2v - v^2` 

 ⇒ `(dv)/(v^2 + 2v) = - (dx)/x`

⇒ `(dv)/(v^2 + 2v)  + (dx)/x = 0` 

⇒ ` int_  (dv)/((v + 1)^2 - (1)^2)  + int_  (dx)/x = 0`

⇒ `(1)/(2) log |[ v+ 1 -1]/[v + 1 + 1]| + log x = c`

⇒ ` log |[ v]/[ v + 2]| + 2 log x = 2c`

⇒ ` log |[ vx^2]/[ v + 2]| = 2c`

⇒ `  |[ vx^2]/[ v + 2]| = e^2c`

⇒ `  ( vx^2)/( v + 2) = ± e^2""^c = "A" ("say")`

⇒ `(yx)/(y/2 + 2) = "A"`

⇒ `x^2y = "A" (y + 2x)`

Now, when  y = 1, x = 1

⇒ 1 = A (3)

⇒ A = `(1)/(3)`

∴ `y + 2x = 3x^2y`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`


Find the second order derivatives of the following : xx 


Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`


Find `"dy"/"dx"` if, y = log(log x)


Choose the correct alternative.

If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =


Fill in the Blank

If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`


If y = x10, then `("d"y)/("d"x)` is ______


If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______


Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`


If y = (sin x2)2,  then `("d"y)/("d"x)` is equal to ______.


If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`


If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`


If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.


If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)` 


If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


The differential equation of (x - a)2 + y2 = a2 is ______ 


lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:

`dy/dx = dy/(du) xx (du)/dx`

Hence, find `d/dx[log(x^5 + 4)]`.


Find `dy/dx` if, y = `e^(5x^2-2x+4)`


If y = `tan^-1((6x - 7)/(6 + 7x))`, then `dy/dx` = ______.


Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`


Find `dy/dx` if, y = `e^(5x^2-2x+4)`


Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`


Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×