Advertisements
Advertisements
प्रश्न
If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
उत्तर
Given that: `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`
Put x = sin θ and y = sin Φ.
∴ θ = sin–1x and Φ = sin–1y
`sqrt(1 - sin^2theta) + sqrt(1 - sin^2phi)` = a(sin θ – sin Φ)
⇒ `sqrt(cos^2theta) + sqrt(cos^2phi)` = a(sin θ – sin Φ)
⇒ cos θ + cos Φ = a(sin θ – sin Φ)
⇒ `(cos theta + cos phi)/(sin theta - sin phi)` = a
⇒ `(2 cos (theta + phi)/2 * cos (theta - phi)/2)/(2cos (theta + phi)/2 * sin (theta - phi)/2)` = a ......`[(because cos "A" + cos "B" = 2cos ("A" + "B")/2 * cos ("A" - "B")/2),(sin"A" - sin"B" = 2cos ("A" + "B")/2 * sin ("A" - "B")/2)]`
⇒ `(cos((theta - phi)/2))/(sin((theta - phi)/2))` = a
⇒ `cot((theta - phi)/2)` = a
⇒ `(theta - phi)/2 = cot^-1"a"`
⇒ θ – Φ = 2cot–1a
⇒ sin–1x – sin–1y = 2 cot–1a
Differentiating both sides w.r.t. x
`"d"/"dx" (sin^-1x) - "d"/"dx"(sin^-1x) = 2*"d"/"dx" cot^-1"a"`
⇒ `1/sqrt(1 - x^2) - 1/sqrt(1 - y^2) * "dy"/"dx"` = 0
⇒ `1/sqrt(1 - y^2) * "dy"/"dx" = 1/sqrt(1 - x^2)`
∴ `"dy"/"dx" = sqrt(1 - y^2)/sqrt(1 - x^2)`.
संबंधित प्रश्न
Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`
Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`
Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`
Find the second order derivatives of the following : e2x . tan x
Find `"dy"/"dx"` if, y = log(log x)
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`
Choose the correct alternative.
If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.
Differentiate `"e"^("4x" + 5)` with respect to 104x.
If y = sec (tan−1x) then `("d"y)/("d"x)` at x = 1 is ______.
If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______
If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`
If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______
State whether the following statement is True or False:
If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
y = `cos sqrt(x)`
Let f(x) = x | x | and g(x) = sin x
Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.
Statement II gof is twice differentiable at x = 0.
Solve the following:
If y = `root5 ((3x^2 + 8x + 5)^4 ,) "find" "dy"/ "dx"`
Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`
If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).
Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`
Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`
Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`
If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`