Advertisements
Advertisements
प्रश्न
If y = tan–1x, find `("d"^2y)/("dx"^2)` in terms of y alone.
उत्तर
Given that: y = tan–1x
⇒ x = tan y
Differentiating both sides w.r.t. y
`"dx"/"dy"` = sec2y
⇒ `"dy"/'dx" = 1/(sec^2y)` = cos2y
Again differentiating both sides w.r.t. x
⇒ `"d"/"dx"("dy"/"dx") = "d"/"dx"(cos^2y)`
⇒ `("d"^2y)/("dx"^2) = 2cos y * "d"/"dx" (cos y)`
⇒ `("d"^2y)/("dx"^2) = 2cos y(- siny) * "dy"/"dx"`
⇒ `("d"^2y)/("dx"^2) = - 2sin y cos y * cos^2 y`
∴ `("d"^2y)/("dx"^2)` = – 2 sin y cos3y
APPEARS IN
संबंधित प्रश्न
If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`
Find the second order derivative of the function.
log x
Find the second order derivative of the function.
e6x cos 3x
Find the second order derivative of the function.
sin (log x)
If y = 5 cos x – 3 sin x, prove that `(d^2y)/(dx^2) + y = 0`
If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.
If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0
If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`
Find `("d"^2"y")/"dx"^2`, if y = log (x).
Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2
If x2 + 6xy + y2 = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`
tan–1(x2 + y2) = a
(x2 + y2)2 = xy
Derivative of cot x° with respect to x is ____________.
If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.
If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.
If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.
`"Find" (d^2y)/(dx^2) "if" y=e^((2x+1))`
Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`
Find `(d^2y)/dx^2` if, y = `e^(2x +1)`
Find `(d^2y)/dx^2, "if" y = e^((2x+1))`
Find `(d^2y)/dx^2` if, `y = e^((2x+1))`