English

If y = tan–1x, find ddxd2ydx2 in terms of y alone. - Mathematics

Advertisements
Advertisements

Question

If y = tan–1x, find `("d"^2y)/("dx"^2)` in terms of y alone.

Sum

Solution

Given that: y = tan–1x

⇒ x = tan y

Differentiating both sides w.r.t. y

`"dx"/"dy"` = sec2y

⇒ `"dy"/'dx" = 1/(sec^2y)` = cos2y

Again differentiating both sides w.r.t. x

⇒ `"d"/"dx"("dy"/"dx") = "d"/"dx"(cos^2y)`

⇒ `("d"^2y)/("dx"^2) = 2cos y * "d"/"dx" (cos y)`

⇒ `("d"^2y)/("dx"^2) = 2cos y(- siny) * "dy"/"dx"` 

⇒ `("d"^2y)/("dx"^2) = - 2sin y cos y * cos^2 y`

∴ `("d"^2y)/("dx"^2)` = – 2 sin y cos3y

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity And Differentiability - Exercise [Page 111]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 5 Continuity And Differentiability
Exercise | Q 64 | Page 111

Video TutorialsVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×