English

F(x) = x(x – 1)2 in [0, 1] - Mathematics

Advertisements
Advertisements

Question

f(x) = x(x – 1)2 in [0, 1]

Sum

Solution

We have, f(x) = x(x – 1)2 in [0, 1]

Since, f(x) = x(x  – 1)2 is a polynomial function it is continuous in [0,1] and differentiable in (0, 1)

Now, f(0) = 0 and f(1)

⇒ f(0) = f(1)

f satisfies the conditions of Rolle's theorem.

Hence, by Rolle's theorem there exists atleast one c ∈ (0, 1) such that f'(c) = 0

⇒ 3c2 – 4c + 1 = 0

⇒ (3c – 1)(c – 1) = 0

⇒ c = `1/3 ∈ (0, 1)` 

Therefore, Rolle's theorem has been verified.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity And Differentiability - Exercise [Page 112]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 5 Continuity And Differentiability
Exercise | Q 65 | Page 112

RELATED QUESTIONS

Verify Lagrange’s mean value theorem for the function f(x)=x+1/x, x ∈ [1, 3]


Verify Rolle’s theorem for the function f (x) = x2 + 2x – 8, x ∈ [– 4, 2].


Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?

f (x) = [x] for x ∈ [– 2, 2]


Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?

f (x) = x2 – 1 for x ∈ [1, 2]


Verify Mean Value Theorem, if f (x) = x2 – 4x – 3 in the interval [a, b], where a = 1 and b = 4.


Verify Mean Value Theorem, if f (x) = x3 – 5x2 – 3x in the interval [a, b], where a = 1 and b = 3. Find all c ∈ (1, 3) for which f ′(c) = 0.


Verify Rolle’s theorem for the following function:

`f(x) = e^(-x) sinx " on"  [0, pi]`


Verify Langrange’s mean value theorem for the function:

f(x) = x (1 – log x) and find the value of  c in the interval [1, 2].


Verify Rolle’s Theorem for the function f(x) = ex (sin x – cos x) on `[ (π)/(4), (5π)/(4)]`.


Verify Mean value theorem for the function f(x) = 2sin x + sin 2x on [0, π].


Verify Rolle’s theorem for the function, f(x) = sin 2x in `[0, pi/2]`.


Verify mean value theorem for the function f(x) = (x – 3)(x – 6)(x – 9) in [3, 5].


The value of c in Mean value theorem for the function f(x) = x(x – 2), x ∈ [1, 2] is ______.


f(x) = log(x2 + 2) – log3 in [–1, 1]


f(x) = `x(x + 3)e^((–x)/2)` in [–3, 0]


Discuss the applicability of Rolle’s theorem on the function given by f(x) = `{{:(x^2 + 1",",  "if"  0 ≤ x ≤ 1),(3 - x",",  "if"  1 ≤ x ≤ 2):}`


Find the points on the curve y = (cosx – 1) in [0, 2π], where the tangent is parallel to x-axis


Using Rolle’s theorem, find the point on the curve y = x(x – 4), x ∈ [0, 4], where the tangent is parallel to x-axis


Find a point on the curve y = (x – 3)2, where the tangent is parallel to the chord joining the points (3, 0) and (4, 1)


Rolle’s theorem is applicable for the function f(x) = |x – 1| in [0, 2].


If x2 + y2 = 1, then ____________.


If the greatest height attained by a projectile be equal to the horizontal range, then the angle of projection is


If A, G, H are arithmetic, geometric and harmonic means between a and b respectively, then A, G, H are


Rolle's Theorem holds for the function x3 + bx2 + cx, 1 ≤ x ≤ 2 at the point `4/3`, the value of b and c are


Let a function f: R→R be defined as

f(x) = `{(sinx - e^x",", if x < 0),(a + [-x]",", if 0 < x < 1),(2x - b",", if x > 1):}`

where [x] is the greatest integer less than or equal to x. If f is continuous on R, then (a + b) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×