Advertisements
Advertisements
Question
Verify Rolle’s theorem for the function f (x) = x2 + 2x – 8, x ∈ [– 4, 2].
Solution
The given function,f (x) = x2 + 2x – 8, being a polynomial function, is continuous in [−4, 2] and is differentiable in (−4, 2).
Hence, Rolle’s Theorem is verified for the given function.
APPEARS IN
RELATED QUESTIONS
Verify Lagrange’s mean value theorem for the function f(x)=x+1/x, x ∈ [1, 3]
Check whether the conditions of Rolle’s theorem are satisfied by the function
f (x) = (x - 1) (x - 2) (x - 3), x ∈ [1, 3]
Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?
f (x) = [x] for x ∈ [5, 9]
Examine the applicability of Mean Value Theorem for all three functions given in the above exercise 2.
Verify Rolle’s theorem for the following function:
f (x) = x2 - 4x + 10 on [0, 4]
Verify Lagrange's Mean Value Theorem for the following function:
`f(x ) = 2 sin x + sin 2x " on " [0, pi]`
f(x) = (x-1)(x-2)(x-3) , x ε[0,4], find if 'c' LMVT can be applied
Verify the Lagrange’s mean value theorem for the function:
`f(x)=x + 1/x ` in the interval [1, 3]
Verify Rolle’s Theorem for the function f(x) = ex (sin x – cos x) on `[ (π)/(4), (5π)/(4)]`.
The value of c in Rolle’s Theorem for the function f(x) = e x sinx, x ∈ π [0, π] is ______.
The value of c in Mean value theorem for the function f(x) = x(x – 2), x ∈ [1, 2] is ______.
f(x) = log(x2 + 2) – log3 in [–1, 1]
f(x) = `sqrt(4 - x^2)` in [– 2, 2]
Discuss the applicability of Rolle’s theorem on the function given by f(x) = `{{:(x^2 + 1",", "if" 0 ≤ x ≤ 1),(3 - x",", "if" 1 ≤ x ≤ 2):}`
Find the points on the curve y = (cosx – 1) in [0, 2π], where the tangent is parallel to x-axis
f(x) = `1/(4x - 1)` in [1, 4]
f(x) = `sqrt(25 - x^2)` in [1, 5]
Using mean value theorem, prove that there is a point on the curve y = 2x2 – 5x + 3 between the points A(1, 0) and B(2, 1), where tangent is parallel to the chord AB. Also, find that point
Rolle’s theorem is applicable for the function f(x) = |x – 1| in [0, 2].
If x2 + y2 = 1, then ____________.
The value of c in Rolle’s theorem for the function, f(x) = sin 2x in `[0, pi/2]` is ____________.
The value of c in mean value theorem for the function f(x) = (x - 3)(x - 6)(x - 9) in [3, 5] is ____________.
Value of' 'c' of the mean value theorem for the function `f(x) = x(x - 2)`, when a = 0, b = 3/2, is
If `1/(a + ω) + 1/(b + ω) + 1/(c + ω) + 1/(d + ω) = 1/ω`, where a, b, c, d ∈ R and ω is a cube root of unity then `sum 3/(a^2 - a + 1)` is equal to
Rolle's Theorem holds for the function x3 + bx2 + cx, 1 ≤ x ≤ 2 at the point `4/3`, the value of b and c are
Let a function f: R→R be defined as
f(x) = `{(sinx - e^x",", if x < 0),(a + [-x]",", if 0 < x < 1),(2x - b",", if x > 1):}`
where [x] is the greatest integer less than or equal to x. If f is continuous on R, then (a + b) is equal to ______.
`lim_(x→0) sqrt(1 - cosx)/(sqrt(2)x)` is ______.