Advertisements
Advertisements
Question
f(x) = `sqrt(4 - x^2)` in [– 2, 2]
Solution
We have, `sqrt(4 - x^2) = (4 - x^2)^(1/2)`
Since (4 – x2) and square root function are continuous and differentiable in their domain, given function f(x) is also continuous and differentiable in [– 2, 2]
Also f(–2) = f(2) = 0
So, conditions of Rolle's theorem are satisfied.
Hence, there exists a real number c ∈ (–2, 2) such that f'(c) = 0.
Now f'(x) = `1/2(4 - x^2)^((-1)/2)(-2x)`
= `- x/sqrt(4 - x^2)`
So, f'(c) = 0
⇒ `"c"/sqrt(4 - "c"^2)` = 0
⇒ c = 0 ∈ (–2, 2)
Hence Rolle's theorem has been verfired.
APPEARS IN
RELATED QUESTIONS
Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?
f (x) = [x] for x ∈ [5, 9]
Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?
f (x) = [x] for x ∈ [– 2, 2]
Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?
f (x) = x2 – 1 for x ∈ [1, 2]
Verify Mean Value Theorem, if f (x) = x2 – 4x – 3 in the interval [a, b], where a = 1 and b = 4.
Verify Mean Value Theorem, if f (x) = x3 – 5x2 – 3x in the interval [a, b], where a = 1 and b = 3. Find all c ∈ (1, 3) for which f ′(c) = 0.
Examine the applicability of Mean Value Theorem for all three functions given in the above exercise 2.
Verify Rolle’s theorem for the following function:
`f(x) = e^(-x) sinx " on" [0, pi]`
Verify Rolle’s Theorem for the function f(x) = ex (sin x – cos x) on `[ (π)/(4), (5π)/(4)]`.
Verify Mean value theorem for the function f(x) = 2sin x + sin 2x on [0, π].
Verify Rolle’s theorem for the function, f(x) = sin 2x in `[0, pi/2]`.
Verify mean value theorem for the function f(x) = (x – 3)(x – 6)(x – 9) in [3, 5].
f(x) = log(x2 + 2) – log3 in [–1, 1]
f(x) = `x(x + 3)e^((–x)/2)` in [–3, 0]
Discuss the applicability of Rolle’s theorem on the function given by f(x) = `{{:(x^2 + 1",", "if" 0 ≤ x ≤ 1),(3 - x",", "if" 1 ≤ x ≤ 2):}`
f(x) = x3 – 2x2 – x + 3 in [0, 1]
Find a point on the curve y = (x – 3)2, where the tangent is parallel to the chord joining the points (3, 0) and (4, 1)
Using mean value theorem, prove that there is a point on the curve y = 2x2 – 5x + 3 between the points A(1, 0) and B(2, 1), where tangent is parallel to the chord AB. Also, find that point
For the function f(x) = `x + 1/x`, x ∈ [1, 3], the value of c for mean value theorem is ______.
Rolle’s theorem is applicable for the function f(x) = |x – 1| in [0, 2].
If x2 + y2 = 1, then ____________.
The value of c in Rolle’s theorem for the function, f(x) = sin 2x in `[0, pi/2]` is ____________.
The value of c in mean value theorem for the function f(x) = (x - 3)(x - 6)(x - 9) in [3, 5] is ____________.
Value of' 'c' of the mean value theorem for the function `f(x) = x(x - 2)`, when a = 0, b = 3/2, is
Let a function f: R→R be defined as
f(x) = `{(sinx - e^x",", if x < 0),(a + [-x]",", if 0 < x < 1),(2x - b",", if x > 1):}`
where [x] is the greatest integer less than or equal to x. If f is continuous on R, then (a + b) is equal to ______.
`lim_(x→0) sqrt(1 - cosx)/(sqrt(2)x)` is ______.
Let f(1) = –2 and f'(x) ≥ 4.2 for 1 ≤ x ≤ 6. The possible value of f(6) lies in the interval ______.