Advertisements
Advertisements
Question
Find a point on the curve y = (x – 3)2, where the tangent is parallel to the chord joining the points (3, 0) and (4, 1)
Solution
We have, y = (x – 3)2, which is polynomial function.
So it is continuous and differentiable.
Thus conditions of mean value theorem are satisfied.
Hence, there exists atleast one c ∈ (3, 4) such that,
f'(c) = `("f"(4) - "f"(3))/(4 - 3)`
⇒ 2(c – 3) = `(1 - 0)/1`
⇒ c – 3 = `1/2`
⇒ c = `7/2 ∈ (3, 4)`
⇒ x = `7/2`, where tangent is parallel to the chord joining points (3, 0) and (4, 1).
For x = `7/2`, y = `(7/2 - 3)^2`
= `(1/2)^2`
= `1/4`
So, `(7/2, 1/4)` is the point on the curve, where tangent drawn is parallel to the chord joining the points (3, 0) and (4, 1).
APPEARS IN
RELATED QUESTIONS
Verify Lagrange’s mean value theorem for the function f(x)=x+1/x, x ∈ [1, 3]
Verify Rolle's theorem for the function
f(x)=x2-5x+9 on [1,4]
Check whether the conditions of Rolle’s theorem are satisfied by the function
f (x) = (x - 1) (x - 2) (x - 3), x ∈ [1, 3]
Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?
f (x) = [x] for x ∈ [5, 9]
Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?
f (x) = [x] for x ∈ [– 2, 2]
Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?
f (x) = x2 – 1 for x ∈ [1, 2]
If f : [– 5, 5] → R is a differentiable function and if f ′(x) does not vanish anywhere, then prove that f (– 5) ≠ f (5).
Verify Mean Value Theorem, if f (x) = x2 – 4x – 3 in the interval [a, b], where a = 1 and b = 4.
Examine the applicability of Mean Value Theorem for all three functions given in the above exercise 2.
Verify Rolle’s theorem for the following function:
`f(x) = e^(-x) sinx " on" [0, pi]`
Verify Lagrange's Mean Value Theorem for the following function:
`f(x ) = 2 sin x + sin 2x " on " [0, pi]`
Verify Rolle’s Theorem for the function f(x) = ex (sin x – cos x) on `[ (π)/(4), (5π)/(4)]`.
Verify Mean value theorem for the function f(x) = 2sin x + sin 2x on [0, π].
The value of c in Mean value theorem for the function f(x) = x(x – 2), x ∈ [1, 2] is ______.
f(x) = log(x2 + 2) – log3 in [–1, 1]
f(x) = `x(x + 3)e^((–x)/2)` in [–3, 0]
Find the points on the curve y = (cosx – 1) in [0, 2π], where the tangent is parallel to x-axis
Using Rolle’s theorem, find the point on the curve y = x(x – 4), x ∈ [0, 4], where the tangent is parallel to x-axis
f(x) = x3 – 2x2 – x + 3 in [0, 1]
f(x) = `sqrt(25 - x^2)` in [1, 5]
For the function f(x) = `x + 1/x`, x ∈ [1, 3], the value of c for mean value theorem is ______.
Rolle’s theorem is applicable for the function f(x) = |x – 1| in [0, 2].
The value of c in Rolle’s theorem for the function, f(x) = sin 2x in `[0, pi/2]` is ____________.
Value of' 'c' of the mean value theorem for the function `f(x) = x(x - 2)`, when a = 0, b = 3/2, is
`lim_(x→0) sqrt(1 - cosx)/(sqrt(2)x)` is ______.