English

Examine the Applicability of Mean Value Theorem for All Three Functions Given in the Above Exercise 2. - Mathematics

Advertisements
Advertisements

Question

Examine the applicability of Mean Value Theorem for all three functions given in the above exercise 2. 

Solution

Mean Value Theorem states that for a function f:[a,b] -> R, if

(a) f is continuous on [ab]

(b) f is differentiable on (ab)

ii) f (x) = [x] for x ∈ [– 2, 2]

It is evident that the given function f (x) is not continuous at every integral point.

In particular, f(x) is not continuous at = −2 and = 2

⇒ f (x) is not continuous in [−2, 2].

The differentiability of f in (−2, 2) is checked as follows.

Let be an integer such that n ∈ (−2, 2).

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.8 [Page 186]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.8 | Q 6 | Page 186

RELATED QUESTIONS

Verify Rolle’s theorem for the function f (x) = x2 + 2x – 8, x ∈ [– 4, 2].


Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?

f (x) = [x] for x ∈ [5, 9]


Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?

f (x) = [x] for x ∈ [– 2, 2]


Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?

f (x) = x2 – 1 for x ∈ [1, 2]


If f : [– 5, 5] → R is a differentiable function and if f ′(x) does not vanish anywhere, then prove that f (– 5) ≠ f (5).


Verify Mean Value Theorem, if f (x) = x2 – 4x – 3 in the interval [a, b], where a = 1 and b = 4.


Verify Mean Value Theorem, if f (x) = x3 – 5x2 – 3x in the interval [a, b], where a = 1 and b = 3. Find all c ∈ (1, 3) for which f ′(c) = 0.


Verify Rolle’s theorem for the following function:

f (x) = x2 - 4x + 10 on [0, 4]


Verify Rolle’s theorem for the following function:

`f(x) = e^(-x) sinx " on"  [0, pi]`


Verify the Lagrange’s mean value theorem for the function: 
`f(x)=x + 1/x ` in the interval [1, 3]


Verify Langrange’s mean value theorem for the function:

f(x) = x (1 – log x) and find the value of  c in the interval [1, 2].


Verify Rolle’s Theorem for the function f(x) = ex (sin x – cos x) on `[ (π)/(4), (5π)/(4)]`.


The value of c in Rolle’s Theorem for the function f(x) = e x sinx, x ∈ π [0, π] is ______.


The value of c in Mean value theorem for the function f(x) = x(x – 2), x ∈ [1, 2] is ______.


f(x) = `sin^4x + cos^4x` in `[0, pi/2]`


Using Rolle’s theorem, find the point on the curve y = x(x – 4), x ∈ [0, 4], where the tangent is parallel to x-axis


f(x) = `1/(4x - 1)` in [1, 4]


f(x) = sinx – sin2x in [0, π]


f(x) = `sqrt(25 - x^2)` in [1, 5]


Find a point on the curve y = (x – 3)2, where the tangent is parallel to the chord joining the points (3, 0) and (4, 1)


Using mean value theorem, prove that there is a point on the curve y = 2x2 – 5x + 3 between the points A(1, 0) and B(2, 1), where tangent is parallel to the chord AB. Also, find that point


The value of c in Rolle’s theorem for the function f(x) = x3 – 3x in the interval `[0, sqrt(3)]` is ______.


For the function f(x) = `x + 1/x`, x ∈ [1, 3], the value of c for mean value theorem is ______.


Rolle’s theorem is applicable for the function f(x) = |x – 1| in [0, 2].


If x2 + y2 = 1, then ____________.


The value of c in Rolle’s theorem for the function, f(x) = sin 2x in `[0, pi/2]` is ____________.


The value of c in mean value theorem for the function f(x) = (x - 3)(x - 6)(x - 9) in [3, 5] is ____________.


Value of' 'c' of the mean value theorem for the function `f(x) = x(x - 2)`, when a = 0, b = 3/2, is


If `1/(a + ω) + 1/(b + ω) + 1/(c + ω) + 1/(d + ω) = 1/ω`, where a, b, c, d ∈ R and ω is a cube root of unity then `sum 3/(a^2 - a + 1)` is equal to


Rolle's Theorem holds for the function x3 + bx2 + cx, 1 ≤ x ≤ 2 at the point `4/3`, the value of b and c are


Let a function f: R→R be defined as

f(x) = `{(sinx - e^x",", if x < 0),(a + [-x]",", if 0 < x < 1),(2x - b",", if x > 1):}`

where [x] is the greatest integer less than or equal to x. If f is continuous on R, then (a + b) is equal to ______.


P(x) be a polynomial satisfying P(x) – 2P'(x) = 3x3 – 27x2 + 38x + 1.

If function

f(x) = `{{:((P^n(x) + 18)/6, x ≠ π/2),(sin^-1(ab) + cos^-1(a + b - 3ab), x = π/2):}`

is continuous at x = ` π/2`, then (a + b) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×