English

Examine If Rolle’S Theorem is Applicable to Any of the Following Functions. Can You Say Some Thing About the Converse of Rolle’S Theorem from These Examples? F (X) = [X] for X ∈ [5, 9] - Mathematics

Advertisements
Advertisements

Question

Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?

f (x) = [x] for x ∈ [5, 9]

Solution

By Rolle’s Theorem, for a function f: [a, b] → R, if

(a) f is continuous on [ab]

(b) f is differentiable on (ab)

(c) (a) = f (b)

then, there exists some c ∈ (ab) such that f'(c) = 0

Therefore, Rolle’s Theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis.

f (x) = [x] for x ∈ [5, 9]

It is evident that the given function f (x) is not continuous at every integral point.

In particular, f(x) is not continuous at = 5 and = 9

⇒ f (x) is not continuous in [5, 9].

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.8 [Page 186]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.8 | Q 2.1 | Page 186

RELATED QUESTIONS

Verify Lagrange’s mean value theorem for the function f(x)=x+1/x, x ∈ [1, 3]


Verify Rolle's theorem for the function  

f(x)=x2-5x+9 on [1,4]


Verify Rolle’s theorem for the function f (x) = x2 + 2x – 8, x ∈ [– 4, 2].


Verify Mean Value Theorem, if f (x) = x3 – 5x2 – 3x in the interval [a, b], where a = 1 and b = 3. Find all c ∈ (1, 3) for which f ′(c) = 0.


Examine the applicability of Mean Value Theorem for all three functions given in the above exercise 2. 


Verify Rolle’s theorem for the following function:

f (x) = x2 - 4x + 10 on [0, 4]


f(x) = (x-1)(x-2)(x-3) , x ε[0,4], find if 'c' LMVT can be applied


Verify the Lagrange’s mean value theorem for the function: 
`f(x)=x + 1/x ` in the interval [1, 3]


Verify Rolle’s Theorem for the function f(x) = ex (sin x – cos x) on `[ (π)/(4), (5π)/(4)]`.


Verify Mean value theorem for the function f(x) = 2sin x + sin 2x on [0, π].


The value of c in Rolle’s Theorem for the function f(x) = e x sinx, x ∈ π [0, π] is ______.


The value of c in Mean value theorem for the function f(x) = x(x – 2), x ∈ [1, 2] is ______.


f(x) = x(x – 1)2 in [0, 1]


f(x) = `sin^4x + cos^4x` in `[0, pi/2]`


f(x) = log(x2 + 2) – log3 in [–1, 1]


Discuss the applicability of Rolle’s theorem on the function given by f(x) = `{{:(x^2 + 1",",  "if"  0 ≤ x ≤ 1),(3 - x",",  "if"  1 ≤ x ≤ 2):}`


Find the points on the curve y = (cosx – 1) in [0, 2π], where the tangent is parallel to x-axis


Using Rolle’s theorem, find the point on the curve y = x(x – 4), x ∈ [0, 4], where the tangent is parallel to x-axis


f(x) = x3 – 2x2 – x + 3 in [0, 1]


Using mean value theorem, prove that there is a point on the curve y = 2x2 – 5x + 3 between the points A(1, 0) and B(2, 1), where tangent is parallel to the chord AB. Also, find that point


The value of c in Rolle’s theorem for the function f(x) = x3 – 3x in the interval `[0, sqrt(3)]` is ______.


Rolle’s theorem is applicable for the function f(x) = |x – 1| in [0, 2].


If x2 + y2 = 1, then ____________.


The value of c in Rolle’s theorem for the function, f(x) = sin 2x in `[0, pi/2]` is ____________.


A value of c for which the Mean value theorem holds for the function f(x) = logex on the interval [1, 3] is ____________.


If A, G, H are arithmetic, geometric and harmonic means between a and b respectively, then A, G, H are


Value of' 'c' of the mean value theorem for the function `f(x) = x(x - 2)`, when a = 0, b = 3/2, is


If `1/(a + ω) + 1/(b + ω) + 1/(c + ω) + 1/(d + ω) = 1/ω`, where a, b, c, d ∈ R and ω is a cube root of unity then `sum 3/(a^2 - a + 1)` is equal to


Rolle's Theorem holds for the function x3 + bx2 + cx, 1 ≤ x ≤ 2 at the point `4/3`, the value of b and c are


`lim_(x→0) sqrt(1 - cosx)/(sqrt(2)x)` is ______.


Let f(1) = –2 and f'(x) ≥ 4.2 for 1 ≤ x ≤ 6. The possible value of f(6) lies in the interval ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×