English

Verify mean value theorem for the function f(x) = (x – 3)(x – 6)(x – 9) in [3, 5]. - Mathematics

Advertisements
Advertisements

Question

Verify mean value theorem for the function f(x) = (x – 3)(x – 6)(x – 9) in [3, 5].

Sum

Solution

(i) Function f is continuous in [3, 5] as product of polynomial functions is a polynomial, which is continuous.

(ii) f′(x) = 3x2 – 36x + 99 exists in (3, 5) and hence derivable in (3, 5).

Thus conditions of mean value theorem are satisfied.

Hence, there exists at least one c ∈ (3, 5) such that

f'(c) = `("f"(5) - "f"(3))/(5 - 3)`

⇒ 3c2 – 36c + 99 = `(8 - 0)/2` = 4

⇒ c = `6 +- sqrt(13/3)`.

Hence c = `6 +- sqrt(13/3)` .....(Since other value is not permissible). 

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity And Differentiability - Solved Examples [Page 98]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 5 Continuity And Differentiability
Solved Examples | Q 18 | Page 98

RELATED QUESTIONS

Verify Lagrange’s mean value theorem for the function f(x)=x+1/x, x ∈ [1, 3]


Verify Rolle's theorem for the function  

f(x)=x2-5x+9 on [1,4]


Check whether the conditions of Rolle’s theorem are satisfied by the function
f (x) = (x - 1) (x - 2) (x - 3), x ∈ [1, 3]


Verify Rolle’s theorem for the function f (x) = x2 + 2x – 8, x ∈ [– 4, 2].


Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?

f (x) = [x] for x ∈ [– 2, 2]


Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?

f (x) = x2 – 1 for x ∈ [1, 2]


If f : [– 5, 5] → R is a differentiable function and if f ′(x) does not vanish anywhere, then prove that f (– 5) ≠ f (5).


Examine the applicability of Mean Value Theorem for all three functions given in the above exercise 2. 


Verify Rolle’s theorem for the following function:

`f(x) = e^(-x) sinx " on"  [0, pi]`


Verify Lagrange's Mean Value Theorem for the following function:

`f(x ) = 2 sin x +  sin 2x " on " [0, pi]`


f(x) = (x-1)(x-2)(x-3) , x ε[0,4], find if 'c' LMVT can be applied


Verify Langrange’s mean value theorem for the function:

f(x) = x (1 – log x) and find the value of  c in the interval [1, 2].


The value of c in Rolle’s Theorem for the function f(x) = e x sinx, x ∈ π [0, π] is ______.


f(x) = log(x2 + 2) – log3 in [–1, 1]


f(x) = `sqrt(4 - x^2)` in [– 2, 2]


Find the points on the curve y = (cosx – 1) in [0, 2π], where the tangent is parallel to x-axis


f(x) = x3 – 2x2 – x + 3 in [0, 1]


Find a point on the curve y = (x – 3)2, where the tangent is parallel to the chord joining the points (3, 0) and (4, 1)


Using mean value theorem, prove that there is a point on the curve y = 2x2 – 5x + 3 between the points A(1, 0) and B(2, 1), where tangent is parallel to the chord AB. Also, find that point


The value of c in Rolle’s theorem for the function f(x) = x3 – 3x in the interval `[0, sqrt(3)]` is ______.


For the function f(x) = `x + 1/x`, x ∈ [1, 3], the value of c for mean value theorem is ______.


If x2 + y2 = 1, then ____________.


A value of c for which the Mean value theorem holds for the function f(x) = logex on the interval [1, 3] is ____________.


Let a function f: R→R be defined as

f(x) = `{(sinx - e^x",", if x < 0),(a + [-x]",", if 0 < x < 1),(2x - b",", if x > 1):}`

where [x] is the greatest integer less than or equal to x. If f is continuous on R, then (a + b) is equal to ______.


P(x) be a polynomial satisfying P(x) – 2P'(x) = 3x3 – 27x2 + 38x + 1.

If function

f(x) = `{{:((P^n(x) + 18)/6, x ≠ π/2),(sin^-1(ab) + cos^-1(a + b - 3ab), x = π/2):}`

is continuous at x = ` π/2`, then (a + b) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×