Advertisements
Advertisements
प्रश्न
Verify mean value theorem for the function f(x) = (x – 3)(x – 6)(x – 9) in [3, 5].
उत्तर
(i) Function f is continuous in [3, 5] as product of polynomial functions is a polynomial, which is continuous.
(ii) f′(x) = 3x2 – 36x + 99 exists in (3, 5) and hence derivable in (3, 5).
Thus conditions of mean value theorem are satisfied.
Hence, there exists at least one c ∈ (3, 5) such that
f'(c) = `("f"(5) - "f"(3))/(5 - 3)`
⇒ 3c2 – 36c + 99 = `(8 - 0)/2` = 4
⇒ c = `6 +- sqrt(13/3)`.
Hence c = `6 +- sqrt(13/3)` .....(Since other value is not permissible).
APPEARS IN
संबंधित प्रश्न
Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?
f (x) = [x] for x ∈ [5, 9]
Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?
f (x) = [x] for x ∈ [– 2, 2]
Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?
f (x) = x2 – 1 for x ∈ [1, 2]
Examine the applicability of Mean Value Theorem for all three functions given in the above exercise 2.
Verify Rolle’s theorem for the following function:
f (x) = x2 - 4x + 10 on [0, 4]
Verify Rolle’s theorem for the following function:
`f(x) = e^(-x) sinx " on" [0, pi]`
Verify Lagrange's Mean Value Theorem for the following function:
`f(x ) = 2 sin x + sin 2x " on " [0, pi]`
Verify the Lagrange’s mean value theorem for the function:
`f(x)=x + 1/x ` in the interval [1, 3]
Verify Langrange’s mean value theorem for the function:
f(x) = x (1 – log x) and find the value of c in the interval [1, 2].
Verify Rolle’s Theorem for the function f(x) = ex (sin x – cos x) on `[ (π)/(4), (5π)/(4)]`.
The value of c in Rolle’s Theorem for the function f(x) = e x sinx, x ∈ π [0, π] is ______.
f(x) = x(x – 1)2 in [0, 1]
f(x) = log(x2 + 2) – log3 in [–1, 1]
f(x) = `sqrt(4 - x^2)` in [– 2, 2]
Discuss the applicability of Rolle’s theorem on the function given by f(x) = `{{:(x^2 + 1",", "if" 0 ≤ x ≤ 1),(3 - x",", "if" 1 ≤ x ≤ 2):}`
f(x) = `1/(4x - 1)` in [1, 4]
f(x) = `sqrt(25 - x^2)` in [1, 5]
Find a point on the curve y = (x – 3)2, where the tangent is parallel to the chord joining the points (3, 0) and (4, 1)
Using mean value theorem, prove that there is a point on the curve y = 2x2 – 5x + 3 between the points A(1, 0) and B(2, 1), where tangent is parallel to the chord AB. Also, find that point
The value of c in Rolle’s theorem for the function f(x) = x3 – 3x in the interval `[0, sqrt(3)]` is ______.
A value of c for which the Mean value theorem holds for the function f(x) = logex on the interval [1, 3] is ____________.
The value of c in mean value theorem for the function f(x) = (x - 3)(x - 6)(x - 9) in [3, 5] is ____________.
If the greatest height attained by a projectile be equal to the horizontal range, then the angle of projection is
If A, G, H are arithmetic, geometric and harmonic means between a and b respectively, then A, G, H are
Rolle's Theorem holds for the function x3 + bx2 + cx, 1 ≤ x ≤ 2 at the point `4/3`, the value of b and c are
`lim_(x→0) sqrt(1 - cosx)/(sqrt(2)x)` is ______.
Let f(1) = –2 and f'(x) ≥ 4.2 for 1 ≤ x ≤ 6. The possible value of f(6) lies in the interval ______.