हिंदी

Verify Rolle’S Theorem for the Function F(X) = Ex (Sin X – Cos X) on (π)/(4), (5π)/(4) - Mathematics

Advertisements
Advertisements

प्रश्न

Verify Rolle’s Theorem for the function f(x) = ex (sin x – cos x) on `[ (π)/(4), (5π)/(4)]`.

योग

उत्तर

f (x) = ex (sin x - cos x), `[ (π)/(4), (5π)/(4)]`

Differentiate w.r.t. x, we have

f (x) = ex (cos x + sin x) + ( sin x - cos x) ex

f (x) = ex [cos x + sin x + sin x - cos x]

f (x) = 2 ex sin x

For maxima or minima, we have

f'(x) = 0

2ex sin x = 0

sin x = 0

x = n π

Thus,    x = π, ∵ lies between `[ (π)/(4), (5π)/(4)]`

So, Rolle's theorem is verified.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Verify Lagrange’s mean value theorem for the function f(x)=x+1/x, x ∈ [1, 3]


Verify Rolle's theorem for the function  

f(x)=x2-5x+9 on [1,4]


Check whether the conditions of Rolle’s theorem are satisfied by the function
f (x) = (x - 1) (x - 2) (x - 3), x ∈ [1, 3]


Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?

f (x) = [x] for x ∈ [5, 9]


If f : [– 5, 5] → R is a differentiable function and if f ′(x) does not vanish anywhere, then prove that f (– 5) ≠ f (5).


Verify Mean Value Theorem, if f (x) = x3 – 5x2 – 3x in the interval [a, b], where a = 1 and b = 3. Find all c ∈ (1, 3) for which f ′(c) = 0.


Verify Rolle’s theorem for the following function:

f (x) = x2 - 4x + 10 on [0, 4]


Verify Lagrange's Mean Value Theorem for the following function:

`f(x ) = 2 sin x +  sin 2x " on " [0, pi]`


f(x) = (x-1)(x-2)(x-3) , x ε[0,4], find if 'c' LMVT can be applied


Verify the Lagrange’s mean value theorem for the function: 
`f(x)=x + 1/x ` in the interval [1, 3]


Verify Langrange’s mean value theorem for the function:

f(x) = x (1 – log x) and find the value of  c in the interval [1, 2].


Verify Mean value theorem for the function f(x) = 2sin x + sin 2x on [0, π].


Verify mean value theorem for the function f(x) = (x – 3)(x – 6)(x – 9) in [3, 5].


The value of c in Rolle’s Theorem for the function f(x) = e x sinx, x ∈ π [0, π] is ______.


f(x) = x(x – 1)2 in [0, 1]


f(x) = `sin^4x + cos^4x` in `[0, pi/2]`


f(x) = `x(x + 3)e^((–x)/2)` in [–3, 0]


Discuss the applicability of Rolle’s theorem on the function given by f(x) = `{{:(x^2 + 1",",  "if"  0 ≤ x ≤ 1),(3 - x",",  "if"  1 ≤ x ≤ 2):}`


Using Rolle’s theorem, find the point on the curve y = x(x – 4), x ∈ [0, 4], where the tangent is parallel to x-axis


f(x) = x3 – 2x2 – x + 3 in [0, 1]


If x2 + y2 = 1, then ____________.


A value of c for which the Mean value theorem holds for the function f(x) = logex on the interval [1, 3] is ____________.


If the greatest height attained by a projectile be equal to the horizontal range, then the angle of projection is


If A, G, H are arithmetic, geometric and harmonic means between a and b respectively, then A, G, H are


P(x) be a polynomial satisfying P(x) – 2P'(x) = 3x3 – 27x2 + 38x + 1.

If function

f(x) = `{{:((P^n(x) + 18)/6, x ≠ π/2),(sin^-1(ab) + cos^-1(a + b - 3ab), x = π/2):}`

is continuous at x = ` π/2`, then (a + b) is equal to ______.


`lim_(x→0) sqrt(1 - cosx)/(sqrt(2)x)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×