हिंदी

If F : [– 5, 5] → R is a Differentiable Function and If F ′(X) Does Not Vanish Anywhere, Then Prove that F (– 5) ≠ F (5). - Mathematics

Advertisements
Advertisements

प्रश्न

If f : [– 5, 5] → R is a differentiable function and if f ′(x) does not vanish anywhere, then prove that f (– 5) ≠ f (5).

उत्तर

It is given that f : [– 5, 5] → R is a differentiable function.

Since every differentiable function is a continuous function, we obtain

(a) f is continuous on [−5, 5].

(b) is differentiable on (−5, 5).

Therefore, by the Mean Value Theorem, there exists c ∈ (−5, 5) such that

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity and Differentiability - Exercise 5.8 [पृष्ठ १८६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 5 Continuity and Differentiability
Exercise 5.8 | Q 3 | पृष्ठ १८६

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Verify Lagrange’s mean value theorem for the function f(x)=x+1/x, x ∈ [1, 3]


Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?

f (x) = [x] for x ∈ [5, 9]


Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?

f (x) = [x] for x ∈ [– 2, 2]


Verify Mean Value Theorem, if f (x) = x2 – 4x – 3 in the interval [a, b], where a = 1 and b = 4.


Verify Mean Value Theorem, if f (x) = x3 – 5x2 – 3x in the interval [a, b], where a = 1 and b = 3. Find all c ∈ (1, 3) for which f ′(c) = 0.


Verify Rolle’s theorem for the following function:

f (x) = x2 - 4x + 10 on [0, 4]


Verify Rolle’s theorem for the following function:

`f(x) = e^(-x) sinx " on"  [0, pi]`


Verify the Lagrange’s mean value theorem for the function: 
`f(x)=x + 1/x ` in the interval [1, 3]


Verify Langrange’s mean value theorem for the function:

f(x) = x (1 – log x) and find the value of  c in the interval [1, 2].


Verify Mean value theorem for the function f(x) = 2sin x + sin 2x on [0, π].


Verify mean value theorem for the function f(x) = (x – 3)(x – 6)(x – 9) in [3, 5].


f(x) = x(x – 1)2 in [0, 1]


f(x) = `x(x + 3)e^((–x)/2)` in [–3, 0]


f(x) = `sqrt(4 - x^2)` in [– 2, 2]


Discuss the applicability of Rolle’s theorem on the function given by f(x) = `{{:(x^2 + 1",",  "if"  0 ≤ x ≤ 1),(3 - x",",  "if"  1 ≤ x ≤ 2):}`


Find the points on the curve y = (cosx – 1) in [0, 2π], where the tangent is parallel to x-axis


Using Rolle’s theorem, find the point on the curve y = x(x – 4), x ∈ [0, 4], where the tangent is parallel to x-axis


f(x) = sinx – sin2x in [0, π]


Find a point on the curve y = (x – 3)2, where the tangent is parallel to the chord joining the points (3, 0) and (4, 1)


The value of c in Rolle’s theorem for the function f(x) = x3 – 3x in the interval `[0, sqrt(3)]` is ______.


If x2 + y2 = 1, then ____________.


The value of c in Rolle’s theorem for the function, f(x) = sin 2x in `[0, pi/2]` is ____________.


A value of c for which the Mean value theorem holds for the function f(x) = logex on the interval [1, 3] is ____________.


The value of c in mean value theorem for the function f(x) = (x - 3)(x - 6)(x - 9) in [3, 5] is ____________.


If the greatest height attained by a projectile be equal to the horizontal range, then the angle of projection is


If A, G, H are arithmetic, geometric and harmonic means between a and b respectively, then A, G, H are


Value of' 'c' of the mean value theorem for the function `f(x) = x(x - 2)`, when a = 0, b = 3/2, is


Rolle's Theorem holds for the function x3 + bx2 + cx, 1 ≤ x ≤ 2 at the point `4/3`, the value of b and c are


Let a function f: R→R be defined as

f(x) = `{(sinx - e^x",", if x < 0),(a + [-x]",", if 0 < x < 1),(2x - b",", if x > 1):}`

where [x] is the greatest integer less than or equal to x. If f is continuous on R, then (a + b) is equal to ______.


P(x) be a polynomial satisfying P(x) – 2P'(x) = 3x3 – 27x2 + 38x + 1.

If function

f(x) = `{{:((P^n(x) + 18)/6, x ≠ π/2),(sin^-1(ab) + cos^-1(a + b - 3ab), x = π/2):}`

is continuous at x = ` π/2`, then (a + b) is equal to ______.


`lim_(x→0) sqrt(1 - cosx)/(sqrt(2)x)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×