हिंदी

F(x) = x(x+3)e–x2 in [–3, 0] - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) = `x(x + 3)e^((–x)/2)` in [–3, 0]

योग

उत्तर

We have, f(x) = `x(x + 3)e^((–x)/2)` 

Since polynomial function x(x + 3) and exponential function `"e"^((-x)/2)` are continuous and differentiable in R, given function f(x) is also continuous and differentiable in R

Also f(0) = f(–3) = 0

So, conditions of Rolle's theorem are satisfied.

Hence, there exists a real number c ∈ (–3, 0) such that f'(c) = 0

Now f(x) = `(x^2 + 3x)"e"^((-x)/2)`

∴ f'(x) = `(2x + 3)"e"^((-x)/2) - 1/2 "e"^((-x)/2) (x^2 + 3x)`

= `- 1/2 "e"^((-x)/2) (x^2 + 3x - 4x - 6)`

= `-1/2 "e"^((-x)/2)(x^2 - x - 6)`

So, f'(x) = 0

⇒ `- 1/2 "e"^((-x)/2) ("c" + 2)("c" - 3)` = 0

⇒ c = –2 ∈ (–3, 0)

Therefore, Rolle's theorem has been verified.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity And Differentiability - Exercise [पृष्ठ ११२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 5 Continuity And Differentiability
Exercise | Q 68 | पृष्ठ ११२

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Verify Lagrange’s mean value theorem for the function f(x)=x+1/x, x ∈ [1, 3]


Check whether the conditions of Rolle’s theorem are satisfied by the function
f (x) = (x - 1) (x - 2) (x - 3), x ∈ [1, 3]


Verify Rolle’s theorem for the function f (x) = x2 + 2x – 8, x ∈ [– 4, 2].


Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?

f (x) = [x] for x ∈ [– 2, 2]


Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?

f (x) = x2 – 1 for x ∈ [1, 2]


If f : [– 5, 5] → R is a differentiable function and if f ′(x) does not vanish anywhere, then prove that f (– 5) ≠ f (5).


Verify Mean Value Theorem, if f (x) = x2 – 4x – 3 in the interval [a, b], where a = 1 and b = 4.


Verify Lagrange's Mean Value Theorem for the following function:

`f(x ) = 2 sin x +  sin 2x " on " [0, pi]`


Verify mean value theorem for the function f(x) = (x – 3)(x – 6)(x – 9) in [3, 5].


The value of c in Mean value theorem for the function f(x) = x(x – 2), x ∈ [1, 2] is ______.


f(x) = log(x2 + 2) – log3 in [–1, 1]


f(x) = `sqrt(4 - x^2)` in [– 2, 2]


Discuss the applicability of Rolle’s theorem on the function given by f(x) = `{{:(x^2 + 1",",  "if"  0 ≤ x ≤ 1),(3 - x",",  "if"  1 ≤ x ≤ 2):}`


Find the points on the curve y = (cosx – 1) in [0, 2π], where the tangent is parallel to x-axis


Using Rolle’s theorem, find the point on the curve y = x(x – 4), x ∈ [0, 4], where the tangent is parallel to x-axis


f(x) = x3 – 2x2 – x + 3 in [0, 1]


f(x) = sinx – sin2x in [0, π]


Using mean value theorem, prove that there is a point on the curve y = 2x2 – 5x + 3 between the points A(1, 0) and B(2, 1), where tangent is parallel to the chord AB. Also, find that point


A value of c for which the Mean value theorem holds for the function f(x) = logex on the interval [1, 3] is ____________.


If the greatest height attained by a projectile be equal to the horizontal range, then the angle of projection is


If A, G, H are arithmetic, geometric and harmonic means between a and b respectively, then A, G, H are


If `1/(a + ω) + 1/(b + ω) + 1/(c + ω) + 1/(d + ω) = 1/ω`, where a, b, c, d ∈ R and ω is a cube root of unity then `sum 3/(a^2 - a + 1)` is equal to


`lim_(x→0) sqrt(1 - cosx)/(sqrt(2)x)` is ______.


Let f(1) = –2 and f'(x) ≥ 4.2 for 1 ≤ x ≤ 6. The possible value of f(6) lies in the interval ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×