Advertisements
Advertisements
प्रश्न
Check whether the conditions of Rolle’s theorem are satisfied by the function
f (x) = (x - 1) (x - 2) (x - 3), x ∈ [1, 3]
उत्तर
`f(x)=(x-1)(x-2)(x-3),` `x in[1, 3]`
`=x^3-6x^2+11x-6`
As f(x) is a polynomial function, it is continuous and differentiable everywhere on its domain. Thus,
a. f(x) is continuous on [1, 3]
b. f(x) is differentiable on (1, 3)
Further, f(1) = 0 and f(3) = 0
∴ f(1) = f(3)
Thus, all the conditions of Rolle’s theorem are satisfied.
APPEARS IN
संबंधित प्रश्न
Verify Lagrange’s mean value theorem for the function f(x)=x+1/x, x ∈ [1, 3]
Verify Rolle's theorem for the function
f(x)=x2-5x+9 on [1,4]
Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?
f (x) = x2 – 1 for x ∈ [1, 2]
If f : [– 5, 5] → R is a differentiable function and if f ′(x) does not vanish anywhere, then prove that f (– 5) ≠ f (5).
Examine the applicability of Mean Value Theorem for all three functions given in the above exercise 2.
Verify Rolle’s theorem for the following function:
f (x) = x2 - 4x + 10 on [0, 4]
Verify Rolle’s theorem for the following function:
`f(x) = e^(-x) sinx " on" [0, pi]`
f(x) = (x-1)(x-2)(x-3) , x ε[0,4], find if 'c' LMVT can be applied
Verify the Lagrange’s mean value theorem for the function:
`f(x)=x + 1/x ` in the interval [1, 3]
Verify Langrange’s mean value theorem for the function:
f(x) = x (1 – log x) and find the value of c in the interval [1, 2].
Verify Rolle’s Theorem for the function f(x) = ex (sin x – cos x) on `[ (π)/(4), (5π)/(4)]`.
Verify Rolle’s theorem for the function, f(x) = sin 2x in `[0, pi/2]`.
The value of c in Rolle’s Theorem for the function f(x) = e x sinx, x ∈ π [0, π] is ______.
f(x) = x(x – 1)2 in [0, 1]
f(x) = `sin^4x + cos^4x` in `[0, pi/2]`
f(x) = log(x2 + 2) – log3 in [–1, 1]
f(x) = `x(x + 3)e^((–x)/2)` in [–3, 0]
f(x) = `sqrt(4 - x^2)` in [– 2, 2]
Find the points on the curve y = (cosx – 1) in [0, 2π], where the tangent is parallel to x-axis
Using Rolle’s theorem, find the point on the curve y = x(x – 4), x ∈ [0, 4], where the tangent is parallel to x-axis
f(x) = `1/(4x - 1)` in [1, 4]
f(x) = x3 – 2x2 – x + 3 in [0, 1]
f(x) = sinx – sin2x in [0, π]
Rolle’s theorem is applicable for the function f(x) = |x – 1| in [0, 2].
If x2 + y2 = 1, then ____________.
The value of c in Rolle’s theorem for the function, f(x) = sin 2x in `[0, pi/2]` is ____________.
The value of c in mean value theorem for the function f(x) = (x - 3)(x - 6)(x - 9) in [3, 5] is ____________.
If A, G, H are arithmetic, geometric and harmonic means between a and b respectively, then A, G, H are
Rolle's Theorem holds for the function x3 + bx2 + cx, 1 ≤ x ≤ 2 at the point `4/3`, the value of b and c are
Let a function f: R→R be defined as
f(x) = `{(sinx - e^x",", if x < 0),(a + [-x]",", if 0 < x < 1),(2x - b",", if x > 1):}`
where [x] is the greatest integer less than or equal to x. If f is continuous on R, then (a + b) is equal to ______.
P(x) be a polynomial satisfying P(x) – 2P'(x) = 3x3 – 27x2 + 38x + 1.
If function
f(x) = `{{:((P^n(x) + 18)/6, x ≠ π/2),(sin^-1(ab) + cos^-1(a + b - 3ab), x = π/2):}`
is continuous at x = ` π/2`, then (a + b) is equal to ______.