Advertisements
Advertisements
प्रश्न
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
उत्तर १
`I = int sqrt(tanx)/[sinx.cosx]` dx
Dividing numerator and denominator by cosx.
= `int [sqrt(tanx)/cosx]/[(sinxcosx)/(cosx)]` dx
= `int [sqrt(tan x)(1/cosx)]/[(sinx/cosx).cosx]` dx
= `int [sqrt(tan x)]/[sinx/cosx](1/cos^2x)` dx
= `int [sqrt(tan x)]/[tan x](1/cos^2x)` dx
= `int [sqrt(tan x)]/[tan x](sec^2x)` dx
Put, tan x = t
Sec2x dx = dt
= `int 1/sqrtt dt`
= 2`tan^(1/2) + c`
= 2`sqrttanx` + c
उत्तर २
APPEARS IN
संबंधित प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
`int (dx)/(sin^2 x cos^2 x)` equals:
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate the following : `int (logx)2.dx`
`int logx/(log ex)^2*dx` = ______.
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Evaluate: `int "x" * "e"^"2x"` dx
`int (log x)/(log ex)^2` dx = _________
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int cos^7 x "d"x`
`int(log(logx))/x "d"x`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
Write `int cotx dx`.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`