हिंदी

Evaluate: ∫tanxsinxcosxdx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int sqrt(tanx)/(sinxcosx) dx`

योग

उत्तर १

`I = int sqrt(tanx)/[sinx.cosx]` dx

Dividing numerator and denominator by cosx.

= `int [sqrt(tanx)/cosx]/[(sinxcosx)/(cosx)]` dx

= `int [sqrt(tan x)(1/cosx)]/[(sinx/cosx).cosx]` dx

= `int [sqrt(tan x)]/[sinx/cosx](1/cos^2x)` dx

= `int [sqrt(tan x)]/[tan x](1/cos^2x)` dx

= `int [sqrt(tan x)]/[tan x](sec^2x)` dx

Put, tan x = t
       Sec2x dx = dt

= `int 1/sqrtt dt`

= 2`tan^(1/2) + c`

= 2`sqrttanx` + c    

shaalaa.com

उत्तर २

Given,
`I = int sqrt(tanx)/[sinx.cosx]` dx
 
simplifying the function
 
`= int sqrt(tanx)/[sinx.cosx. (cosx)/(cosx)]` dx
 
`= int sqrt(tanx)/[sinx.(cos^2x)/(cosx)` dx
 
`= int sqrt(tanx)/[cos^2x. (sinx)/(cosx)]` dx
 
`= int sqrt(tanx)/[cos^2x. tanx]` dx
 
`= int [sqrt(tanx).(tan x)^(-1)]/[cos^2x]` dx
 
`= int [(tanx)^(1/2 -1)]/[cos^2x]` dx
 
`= int [(tanx)^(-1/2)]/[cos^2x]` dx
 
`= int (tanx)^(-1/2). 1/[cos^2x]` dx
 
`= int (tanx)^(-1/2). sec^2x` dx
 
Let tan x = t
So, sec2x = `(dt)/(dx)`
 
⇒ dx = `(dt)/(sec^2x)`
 
∴ `int (tanx)^(−1/2).sec^2x` dx
 
= `int(t)^(−1/2).sec^2x. (dt)/(sec^2x)`​
 
= `int(t)^(−1/2)` dt
 
= `(t^(-1/2) + 1)/(-1/2 + 1) + C   ...{as int x^n dx = (x^(n + 1))/(n + 1) + C}`
 
= `t^(1/2)/(1/2) + C`
 
= `2t^(1/2) + C`   
 
= `2sqrt(t) + C`
 
Substituting t = tan x
 
= `2sqrt(tanx) + C`
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (July)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Integrate the functions:

sin (ax + b) cos (ax + b)


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`(sin^(-1) x)/(sqrt(1-x^2))`


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


`int (dx)/(sin^2 x cos^2 x)` equals:


Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Evaluate the following integrals:

`int x/(x + 2).dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


Evaluate the following : `int (logx)2.dx`


`int logx/(log ex)^2*dx` = ______.


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Evaluate: ∫ |x| dx if x < 0


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


Evaluate: `int "x" * "e"^"2x"` dx


`int (log x)/(log ex)^2` dx = _________


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int cos^7 x  "d"x`


`int(log(logx))/x  "d"x`


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


Write `int cotx  dx`.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate the following

`int1/(x^2 +4x-5)dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate `int (1+x+x^2/(2!)) dx`


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


Evaluate the following:

`int (1) / (x^2 + 4x - 5) dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate the following.

`int1/(x^2 + 4x-5)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×