हिंदी

Evaluate the following integrals : ∫2x+32x2+3x-1.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`

योग

उत्तर

Let I = `int (2x + 3)/(2x^2 + 3x - 1).dx`

Let 2x + 3 = `"A"[d/dx(2x^2 + 3x - 1)] + "B"`

= A(4x + 3) + B
∴ 2x + 3 = 4Ax + (3A + B)
Comapring the coefficientof x and constant on both sides, we get
4A = 2 and 3A + B = 3

∴ A = `(1)/(2) and 3(1/2) + "B"` = 3

∴ B = `(3)/(2)`

∴ 2x + 3 = `(1)/(2)(4x + 3) + (3)/(2)`

∴ I = `int (1/2(4x + 3) + (3)/(2))/(2x^2 + 3x - 1).dx`

= `(1)/(2) int (4x + 3)/(2x^2 + 3x - 1).dx + (3)/(2) int (1)/(2x^2 + 3x - 1).dx`

= `(1)/(2)"I"_1 + (3)/(2)"I"_2`

I1 is of the type `int (f'(x))/f(x)dx = log|f(x)| + c`

∴ I1 = log |2x2 + 3x – 1| + c1

I2 = `int (1)/(2x^2 + 3x - 1).dx`

= `(1)/(2) int (1)/(x^2 + 3/2x - 1/2).dx`

= `(1)/(2) int (1)/((x^2 + 3/2x + 9/16) - 9/16 - 1/2).dx`

= `(1)/(2) int (1)/((x + 3/4)^2 - (sqrt(17)/4)^2).dx`

= `(1)/(2) xx (1)/(2 xx sqrt(17)/(4))log|(x + 3/4 - sqrt(17)/4)/(x + 3/4 + sqrt(17)/4)| + c_2`

= `(1)/sqrt(17)log|(4x + 3 - sqrt(17))/(4x + 3 + sqrt(17))| + c_2`

∴ I = `(1)/(2)log|2x^2 + 3x - 1| + (3)/(2sqrt(17))log|(4x + 3 - sqrt(17))/(4x + 3 + sqrt(17))| + c`, where c = c + c2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (C) [पृष्ठ १२८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (C) | Q 1.3 | पृष्ठ १२८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

sec2(7 – 4x)


Integrate the functions:

`(sin^(-1) x)/(sqrt(1-x^2))`


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

`sqrt(tanx)/(sinxcos x)`


Integrate the functions:

`(1+ log x)^2/x`


Integrate the functions:

`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


Evaluate the following integrals : tan2x dx


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `int sin 4x cos 3x dx`


Evaluate the following integrals:

`int x/(x + 2).dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


Evaluate: `int "x" * "e"^"2x"` dx


`int x^2/sqrt(1 - x^6)` dx = ________________


`int (log x)/(log ex)^2` dx = _________


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int ("d"x)/(x(x^4 + 1))` = ______.


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


`int cos^3x  dx` = ______.


Write `int cotx  dx`.


Find `int dx/sqrt(sin^3x cos(x - α))`.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate `int (1)/(x(x - 1))dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate `int1/(x(x-1))dx` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×