Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
उत्तर
Let I = `int (2x + 3)/(2x^2 + 3x - 1).dx`
Let 2x + 3 = `"A"[d/dx(2x^2 + 3x - 1)] + "B"`
= A(4x + 3) + B
∴ 2x + 3 = 4Ax + (3A + B)
Comapring the coefficientof x and constant on both sides, we get
4A = 2 and 3A + B = 3
∴ A = `(1)/(2) and 3(1/2) + "B"` = 3
∴ B = `(3)/(2)`
∴ 2x + 3 = `(1)/(2)(4x + 3) + (3)/(2)`
∴ I = `int (1/2(4x + 3) + (3)/(2))/(2x^2 + 3x - 1).dx`
= `(1)/(2) int (4x + 3)/(2x^2 + 3x - 1).dx + (3)/(2) int (1)/(2x^2 + 3x - 1).dx`
= `(1)/(2)"I"_1 + (3)/(2)"I"_2`
I1 is of the type `int (f'(x))/f(x)dx = log|f(x)| + c`
∴ I1 = log |2x2 + 3x – 1| + c1
I2 = `int (1)/(2x^2 + 3x - 1).dx`
= `(1)/(2) int (1)/(x^2 + 3/2x - 1/2).dx`
= `(1)/(2) int (1)/((x^2 + 3/2x + 9/16) - 9/16 - 1/2).dx`
= `(1)/(2) int (1)/((x + 3/4)^2 - (sqrt(17)/4)^2).dx`
= `(1)/(2) xx (1)/(2 xx sqrt(17)/(4))log|(x + 3/4 - sqrt(17)/4)/(x + 3/4 + sqrt(17)/4)| + c_2`
= `(1)/sqrt(17)log|(4x + 3 - sqrt(17))/(4x + 3 + sqrt(17))| + c_2`
∴ I = `(1)/(2)log|2x^2 + 3x - 1| + (3)/(2sqrt(17))log|(4x + 3 - sqrt(17))/(4x + 3 + sqrt(17))| + c`, where c = c + c2.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Integrate the functions:
`(1+ log x)^2/x`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of
Write a value of
Write a value of
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Evaluate the following integrals : tan2x dx
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
Evaluate: `int "x" * "e"^"2x"` dx
`int x^2/sqrt(1 - x^6)` dx = ________________
`int (log x)/(log ex)^2` dx = _________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int ("d"x)/(x(x^4 + 1))` = ______.
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
`int cos^3x dx` = ______.
Write `int cotx dx`.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate `int (1)/(x(x - 1))dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate `int1/(x(x-1))dx`