हिंदी

Evaluate the following integrals: ∫2x+1x2+4x-5.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`

योग

उत्तर

Let I = `int (2x + 1)/(x^2 + 4x - 5).dx`

Let 2x + 1 = `"A"[d/dx(x^2 + 4x - 5)] + "B"`

2x + 1 = A(2x + 4) + B

∴ 2x + 1 = 2Ax + (4A + B)

Comparing the coefficient of x and constant on both sides, we get,

2A = 2 and 4A + B = 1
∴ A = 1 and ∴  4(1) + B = 1
    ∴ B = 1 - 4
    ∴ B = - 3

∴ 2x + 1 = (2x + 1) - 3

∴ I = `int ((2x + 1) - 3)/(x^2 + 4x + 5)."dx"`

∴ I = `int (2x + 1)/(x^2 + 4x - 5)."dx" - 3 int (1)/(x^2 + 4x - 5)."dx"`

∴ I = `"I"_1 - 3"I"_2`

I1 is of the type `int (f'(x))/f(x).dx = log|f(x)| + c`

∴ `"I"_1 = log|x^2 + 4x - 5| + c_1`

∴  I2 = `int (1)/(x^2 + 4x - 5).dx`

∴  I2 = `int (1)/((x^2 + 4x + 4) - 4 - 5).dx`

∴  I2 = `int (1)/((x + 2)^2 - 3^2).dx`

∴  I2 = `1/(2 × 3) log |(x + 2 - 3)/(x + 2 + 3)| + c_2`

∴  I2 = `1/6 log |(x - 1)/(x + 5)| + c_2`

∴ I = `log|x^2 + 4x - 5| - 3 × 1/6 log|(x - 1)/(x + 5)| + c`.

∴ I = `log|x^2 + 4x - 5| - 1/2 log|(x - 1)/(x + 5)| + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (C) [पृष्ठ १२८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (C) | Q 1.2 | पृष्ठ १२८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Integrate the functions:

sin (ax + b) cos (ax + b)


Integrate the functions:

(4x + 2) `sqrt(x^2 + x +1)`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


Solve: dy/dx = cos(x + y)


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

Write a value of\[\int \log_e x\ dx\].

 


Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


\[\int x \sin^3 x\ dx\]

Find : ` int  (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`


Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals:

`int x/(x + 2).dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int "x" * "e"^"2x"` dx


`int cos sqrtx` dx = _____________


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


`int (cos x)/(1 - sin x) "dx" =` ______.


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int ("d"x)/(x(x^4 + 1))` = ______.


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


`int (f^'(x))/(f(x))dx` = ______ + c.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


`int (logx)^2/x dx` = ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


`int "cosec"^4x  dx` = ______.


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4)) dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate `int1/(x(x-1))dx`


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×