Advertisements
Advertisements
प्रश्न
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
उत्तर
Let I = `int (2x + 1)/(x^2 + 4x - 5).dx`
Let 2x + 1 = `"A"[d/dx(x^2 + 4x - 5)] + "B"`
2x + 1 = A(2x + 4) + B
∴ 2x + 1 = 2Ax + (4A + B)
Comparing the coefficient of x and constant on both sides, we get,
2A = 2 | and | 4A + B = 1 |
∴ A = 1 | and | ∴ 4(1) + B = 1 |
∴ B = 1 - 4 | ||
∴ B = - 3 |
∴ 2x + 1 = (2x + 1) - 3
∴ I = `int ((2x + 1) - 3)/(x^2 + 4x + 5)."dx"`
∴ I = `int (2x + 1)/(x^2 + 4x - 5)."dx" - 3 int (1)/(x^2 + 4x - 5)."dx"`
∴ I = `"I"_1 - 3"I"_2`
I1 is of the type `int (f'(x))/f(x).dx = log|f(x)| + c`
∴ `"I"_1 = log|x^2 + 4x - 5| + c_1`
∴ I2 = `int (1)/(x^2 + 4x - 5).dx`
∴ I2 = `int (1)/((x^2 + 4x + 4) - 4 - 5).dx`
∴ I2 = `int (1)/((x + 2)^2 - 3^2).dx`
∴ I2 = `1/(2 × 3) log |(x + 2 - 3)/(x + 2 + 3)| + c_2`
∴ I2 = `1/6 log |(x - 1)/(x + 5)| + c_2`
∴ I = `log|x^2 + 4x - 5| - 3 × 1/6 log|(x - 1)/(x + 5)| + c`.
∴ I = `log|x^2 + 4x - 5| - 1/2 log|(x - 1)/(x + 5)| + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Solve: dy/dx = cos(x + y)
Write a value of\[\int \log_e x\ dx\].
Write a value of
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int "x" * "e"^"2x"` dx
`int cos sqrtx` dx = _____________
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int (cos x)/(1 - sin x) "dx" =` ______.
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int ("d"x)/(x(x^4 + 1))` = ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
`int (logx)^2/x dx` = ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
`int "cosec"^4x dx` = ______.
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`