Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
उत्तर
Let I = `int(2sinx cosx)/(3cos^2x + 4sin^2x).dx`
Put 3cos2x + 4sin2x = t
∴ `[3(2cosx)d/dx(cosx) + 4(2sinx)d/dx(sinx)]dx` = dt
∴ [–6 cosx sinx + 8 sinx cosx]dx = dt
∴ 2 sinx cosx dx = dt
Then I = `int dt/t` = log|t| + c
= log|3cos2x + 4sin2x| + c
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
sec2(7 – 4x)
`int (dx)/(sin^2 x cos^2 x)` equals:
Solve: dy/dx = cos(x + y)
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int 1/(cos x - sin x)` dx = _______________
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int sqrt(1 + sin2x) "d"x`
`int (sin4x)/(cos 2x) "d"x`
`int logx/x "d"x`
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
`int (7x + 9)^13 "d"x` ______ + c
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int x^3"e"^(x^2) "d"x`
`int (cos x)/(1 - sin x) "dx" =` ______.
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int sec^6 x tan x "d"x` = ______.
`int ("d"x)/(x(x^4 + 1))` = ______.
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`