हिंदी

∫ √ X − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{x - x^2} dx\]
योग

उत्तर

\[\int \sqrt{x - x^2} \text{ dx }\]
\[ = \int \sqrt{- \left( x^2 - x \right)} \text{ dx }\]
\[ = \int \sqrt{- \left\{ x^2 - x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 \right\}} \text{ dx }\]
\[ = \int \sqrt{\left( \frac{1}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2} dx\]
\[ = \left( \frac{x - \frac{1}{2}}{2} \right) \sqrt{x - x^2} + \frac{1}{8} \sin^{- 1} \left( \frac{x - \frac{1}{2}}{\frac{1}{2}} \right) + C \left[ \because \int\sqrt{a^2 - x^2}dx = \frac{1}{2}x\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \sin^{- 1} \frac{x}{a} + C \right]\]
\[ = \left( \frac{2x - 1}{4} \right) \sqrt{x - x^2} + \frac{1}{8} \text{ sin}^{- 1} \left( 2x - 1 \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.28 [पृष्ठ १५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.28 | Q 3 | पृष्ठ १५४

संबंधित प्रश्न

 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

(4x + 2) `sqrt(x^2 + x +1)`


Integrate the functions:

tan2(2x – 3)


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals : `int sin 4x cos 3x dx`


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate `int 1/((2"x" + 3))` dx


`int (sin4x)/(cos 2x) "d"x`


`int cot^2x  "d"x`


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


Evaluate `int(3x^2 - 5)^2  "d"x`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int(log(logx) + 1/(logx)^2)dx` = ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate `int1/(x(x - 1))dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4)) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×