Advertisements
Advertisements
प्रश्न
उत्तर
\[\int \sqrt{x - x^2} \text{ dx }\]
\[ = \int \sqrt{- \left( x^2 - x \right)} \text{ dx }\]
\[ = \int \sqrt{- \left\{ x^2 - x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 \right\}} \text{ dx }\]
\[ = \int \sqrt{\left( \frac{1}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2} dx\]
\[ = \left( \frac{x - \frac{1}{2}}{2} \right) \sqrt{x - x^2} + \frac{1}{8} \sin^{- 1} \left( \frac{x - \frac{1}{2}}{\frac{1}{2}} \right) + C \left[ \because \int\sqrt{a^2 - x^2}dx = \frac{1}{2}x\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \sin^{- 1} \frac{x}{a} + C \right]\]
\[ = \left( \frac{2x - 1}{4} \right) \sqrt{x - x^2} + \frac{1}{8} \text{ sin}^{- 1} \left( 2x - 1 \right) + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`(1+ log x)^2/x`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`