Advertisements
Advertisements
प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
उत्तर
`"Let "I = int_a^bf(x)dx`
Put x= a + b - t
∴ dx = -dt
When x = a, t = b and when x = b, t = a
`therefore I = int_b^af(a+b-t)(-dt)`
`therefore I = -int_b^af(a+b-t)dt`
`therefore I = int_a^bf(a+b-t)dt ... [because int_a^bf(x)dx=-int_b^af(x)dx]`
`therefore int_a^bf(x)dx = int_a^bf(a+b-x)dx ... [because int_a^bf(x)dx= int_a^bf(t)dt]`
`"Let "I = int_a^b(f(x))/(f(x)+f(a+b-x))dx ... (i)`
`therefore I = int_a^b(f(a+b-x))/(f(a+b-x)+f(a+b-(a+b-x)))dx`
`therefore I = int_a^b(f(a+b-x))/(f(a+b-x)+f(x))dx ... (ii)`
Adding (i) and (ii) we get
`2I = int_a^b(f(x)+f(a+b-x))/(f(x)+f(a+b-x))dx`
`therefore 2I = int_a^b1dx`
`therefore 2I = [x]_a^b`
`therefore I = (b-a)/2`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`1/(1 - tan x)`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : tan5x
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int(log(logx))/x "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
`int x^3"e"^(x^2) "d"x`
`int sin^-1 x`dx = ?
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
`int secx/(secx - tanx)dx` equals ______.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate `int (1+x+x^2/(2!))dx`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int 1/(x(x-1))dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int 1/(x(x-1)) dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`