Advertisements
Advertisements
प्रश्न
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
उत्तर १
` I = int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
` int ( 2 sin x cos x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
put t = sin2 x
`dt/dx = 2 ` sin x cos x
⇒ dt = 2 sin x cos dx
⇒ I = `int dt/ (( t + 1 )( t + 3) ) dt `
` I = 1/2 [ int 1/(t + 1) dt - int 1/(( t + 3 )) dt ] `
` I = 1/2 [ "In" ( 1+ t) - "In" (3+t)] + C`
`I = 1/2 "In" ((1+t)/(3 +t)) + C`
`⇒ I = 1/2 " In" ((1 + sin^2 x ) /( 3 + sin^2 x ) ) + c `
उत्तर २
`int_ (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
⇒ `I = int_ (2sin"x"·cos"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
let sin2 x + 3 = t ⇒ 2sin x·cos xdx = dt
Therefore,
`I = int_ (d"t")/(("t" - 2)"t")`
⇒ `I = 1/2 int_ ((1)/("t"-2)- 1/"t")d"t"`
⇒ `I = 1/2 [ "In" ( "t" -2) - "In" "t"] + c`
⇒ `I = 1/2 "In" (("t"-2)/("t")) + c`
⇒ `I = "In" sqrt(("t"-2)/("t")) + c`
⇒ `I = "In" sqrt((sin^2 "x" +1)/(sin^2 "x"+3)) + c`
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`(1+ log x)^2/x`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int(1 + x + x^2 / (2!))dx`