Advertisements
Advertisements
प्रश्न
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
उत्तर
Let I = `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
`=>I=int((3sintheta-2)costheta)/(5-(1-sin^2theta)-4sintheta)d theta`
`=>I=int((3sintheta-2)costheta)/(sin^2theta-4sin theta+4)d theta`
Now, let sin θ=t.
⇒ cos θ dθ=dt
`:.I=int(3t-2)/(t^2-4t+4)`
`=>3t-2=Ad/dx(t^2-4t+4)+B`
`=>3t-2=A(2t-4)+B`
`=>3t-2=(2A)t+B-4A`
Comparing the coefficients of the like powers of t, we get
`2A=3=>A=3/2`
and
B-4A=-2
`=>B-4xx3/2=-2`
`=>B=-2+6=4`
Substituting the values of A and B, we get
`3t-2=3/2(2t-4)+4`
`:.I=int((3t-2)dt)/(t^2-4t+4)`
`=int((3/2(2t-4)+4)/(t^2-4t+4))dt`
`=3/2int((2t-4)/(t^2-4t+4))dt+4intdt/(t^2-4t+4)`
`=3/2I_1+4I_2 `
Here,
`I_1=int((2t-4)dt)/(t^2-4t+4) `
Now,
`I_2=int((2t-4)dt)/(t^2-4t+4)`
Let t2−4t+4=p
⇒(2t−4) dt=dp
`I_1=int((2t-4)dt)/(t^2-4t+4)`
`=int(dp)/p`
=log |p|+C1
=log |t2−4t+4|+C1 ......(2)
and
`I_2=intdt/(t^2-4t+4)`
`=intdt/(t-2)^2`
= ∫(t−2)−2 dt
`=(t-2)^(-2+1)/(-2+1)+C_2`
`=(-1)/(t-2)+C_2 " .......(3)"`
From (1), (2) and (3), we get
`I=3/2log|t^2-4t+4|+4xx-1/(t-2)+C_1+C_2`
`=3/2log|sin^2theta-4sintheta+4|+4/(2-t)+C " (Where C=C1+C2)"`
`=3/2log|(sintheta-2^2)|+4/(2-sin theta)+C`
`=3/2xx2log|sintheta-2|+4/(2-sintheta)+C`
`=3log|2-sintheta|+4/(2-sintheta)+C`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Write a value of
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Integrate the following functions w.r.t. x : tan5x
Evaluate the following : `int (logx)2.dx`
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int(log(logx))/x "d"x`
`int(log(logx) + 1/(logx)^2)dx` = ______.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate `int(1+ x + x^2/(2!)) dx`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int1/(x(x-1))dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`