Advertisements
Advertisements
प्रश्न
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
उत्तर
Let `I==int_0^pie^(2x)sin(pi/2+x)dx`
Integrating by parts, we get
` I=1/2[e^(2x)sin(pi/4+x)_0^pi]-1/2int_0^pie^(2x)cos(pi/4+x)dx`
Now, integrating the second term by parts, we get
` =>I=1/2[e^(2x)sin(pi/4+x)_0^pi]-1/2{[1/2e^(2x)cos(pi/4+x)_0^pi]+1/2int_0^pi e^(2x)sin(pi/4+x)dx}`
=>`I=1/2[e^(2x)sin(pi/4+x)_0^pi]-1/4[e^(2x)cos(pi/4+x)_0^pi]-1/4I`
`=>5/4I=1/2[e^(2x)sin(pi+pi/4)-sin(pi/4)]-1/4[e^(2x)cos(pi+pi/4)-cos(pi/4)]`
`=>5/4I=1/2 |__-e^(2x)xx1/sqrt2-1/sqrt2__|-1/4|__-e^(2pi)xx1/sqrt2-1/sqrt2__|`
`=>5/4I==1/(2sqrt2)e^(2pi)-1/(2sqrt2)+1/(4sqrt2)e^(2pi)+1/(4sqrt2)`
`=>I=-1/(5sqrt2)(e^(2pi)+1)`
APPEARS IN
संबंधित प्रश्न
Integrate the function in (sin-1x)2.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following : `int x^2tan^-1x.dx`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(x log x) "d"x`
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
`int(1-x)^-2 dx` = ______
Solution of the equation `xdy/dx=y log y` is ______
Evaluate the following.
`int x^3 e^(x^2) dx`
`int1/(x+sqrt(x)) dx` = ______
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int (logx)^2 dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`