Advertisements
Advertisements
प्रश्न
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
उत्तर
Let I = `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`
Take cot–1 x = t
∴ x = cot t
∴ dx = – cosec2 t dt
∴ I = `int e^t ((1 + cot^2 t - cot t)/(1 + cot^2 t))(-"cosec"^2t) dt`
= `int - e^t (("cosec"^2t - cot t))/("cosec"^2t) xx "cosec"^2 t dt`
= `int - e^t ("cosec"^2 t - cot t)dt`
= `int e^t (cot t - "cosec"^2t)dt`
∴ Now, taking f(t) = cot t
Then f'(t) = – cosec2 t
∴ I = `int e^t [f(t) + f^'(t)]dt`
= et f(t) + C
= `e^(cot^(–1)x) |cot (cot^-1 x)| + C`
= `e^(cot^(-1)x) xx x + C`
= `xe^(cot^(–1)x) + C`.
संबंधित प्रश्न
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x sin x.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in `e^x (1/x - 1/x^2)`.
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^3.logx.dx`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
`int 1/sqrt(x^2 - 8x - 20) "d"x`
∫ log x · (log x + 2) dx = ?
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
Solution of the equation `xdy/dx=y log y` is ______
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
Evaluate the following.
`intx^3 e^(x^2)dx`