मराठी

Find ∫ecot-1x(1-x+x21+x2)dx. - Mathematics

Advertisements
Advertisements

प्रश्न

Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.

बेरीज

उत्तर

Let I = `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`

Take cot–1 x = t

∴ x = cot t

∴ dx = – cosec2 t dt

∴  I = `int e^t ((1 + cot^2 t - cot t)/(1 + cot^2 t))(-"cosec"^2t) dt`

= `int - e^t (("cosec"^2t - cot t))/("cosec"^2t) xx "cosec"^2 t  dt`

= `int - e^t ("cosec"^2 t - cot t)dt`

= `int e^t (cot t - "cosec"^2t)dt`

∴ Now, taking f(t) = cot t

Then f'(t) = – cosec2 t

∴ I = `int e^t [f(t) + f^'(t)]dt`

= et f(t) + C

= `e^(cot^(–1)x) |cot (cot^-1 x)| + C`

= `e^(cot^(-1)x) xx x + C`

= `xe^(cot^(–1)x) + C`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Outside Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`


`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


If u and v are two functions of x then prove that

`intuvdx=uintvdx-int[du/dxintvdx]dx`

Hence evaluate, `int xe^xdx`


Integrate the function in x sin x.


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Integrate the function in `e^x (1/x - 1/x^2)`.


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int x^3.logx.dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


∫ log x · (log x + 2) dx = ?


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


Solution of the equation `xdy/dx=y log y` is ______


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


Evaluate the following.

`intx^3 e^(x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×