मराठी

Evaluate the following: d∫(cos5x+cos4x)1-2cos3xdx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`

बेरीज

उत्तर

Let I = `int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`

= `int (2cos  (5x + 4x)/2 * cos  (5x - 4x)/2)/(1 - 2(2 cos^2  (3x)/2 - 1)) "d"x`

= `int (2cos  (9x)/2 * cos  x/2)/(1 - 4 cos^2  (3x)/2 + 2) "d"x`

= `int (2cos  (9x)/2 * cos  x/2)/(3 - 4 cos^2  (3x)/2)  "d"x`

= `- int (2 cos  (9x)/2 * cos  x/2)/(4 cos^2  (3x)/2 - 3)  "d"x`

= `- int (2cos  (9x)/2 * cos  x/2 * cos  (3x)/2)/(4 cos^2  (3x)/2 - 3 cos  (3x)/2) "d"x`  ....`["Multiplying and dividing by" cos  (3x)/2]`

= `int (2  cos  (9x)/2 * cos  x/2 * cos  (3x)/2)/(cos 3 * (3x)/2)  "dx"`  ......[∵ cos 3x = 4 cos3x – 3 cos x]

= `- int (2cos  (9x)/2 * cos  x/2 * cos  (3x)/2)/(cos  (9x)/2)  "d"x`

= `- int 2 cos  (3x)/2 * cos  x/2  "d"x`

= `- int [cos((3x)/2 + x/2) + cos((3x)/2 - x/2)] "d"x`

= `- int (cos 2x + cos x) "d"x`  ....[∵ 2 cos A cos B = cos (A + B) + cos (A – B)]

= `- int cos 2x  "d"x - int cos x "d"x`

= `- 1/2 sin 2x - sin x + "C"`

Hence, I = `- [1/2 sin 2x + sin x] + "C"`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 22 | पृष्ठ १६४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Integrate the function in x tan-1 x.


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


Find : 

`∫(log x)^2 dx`


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Evaluate the following.

∫ x log x dx


Evaluate the following.

`int (log "x")/(1 + log "x")^2` dx


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


`int logx/(1 + logx)^2  "d"x`


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


`int cot "x".log [log (sin "x")] "dx"` = ____________.


State whether the following statement is true or false.

If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.


`int 1/sqrt(x^2 - a^2)dx` = ______.


`int_0^1 x tan^-1 x  dx` = ______.


`int1/sqrt(x^2 - a^2) dx` = ______


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following.

`int x^3 e^(x^2) dx` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×