Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
उत्तर
Let I = `int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
= `int (2cos (5x + 4x)/2 * cos (5x - 4x)/2)/(1 - 2(2 cos^2 (3x)/2 - 1)) "d"x`
= `int (2cos (9x)/2 * cos x/2)/(1 - 4 cos^2 (3x)/2 + 2) "d"x`
= `int (2cos (9x)/2 * cos x/2)/(3 - 4 cos^2 (3x)/2) "d"x`
= `- int (2 cos (9x)/2 * cos x/2)/(4 cos^2 (3x)/2 - 3) "d"x`
= `- int (2cos (9x)/2 * cos x/2 * cos (3x)/2)/(4 cos^2 (3x)/2 - 3 cos (3x)/2) "d"x` ....`["Multiplying and dividing by" cos (3x)/2]`
= `int (2 cos (9x)/2 * cos x/2 * cos (3x)/2)/(cos 3 * (3x)/2) "dx"` ......[∵ cos 3x = 4 cos3x – 3 cos x]
= `- int (2cos (9x)/2 * cos x/2 * cos (3x)/2)/(cos (9x)/2) "d"x`
= `- int 2 cos (3x)/2 * cos x/2 "d"x`
= `- int [cos((3x)/2 + x/2) + cos((3x)/2 - x/2)] "d"x`
= `- int (cos 2x + cos x) "d"x` ....[∵ 2 cos A cos B = cos (A + B) + cos (A – B)]
= `- int cos 2x "d"x - int cos x "d"x`
= `- 1/2 sin 2x - sin x + "C"`
Hence, I = `- [1/2 sin 2x + sin x] + "C"`.
APPEARS IN
संबंधित प्रश्न
Integrate the function in x tan-1 x.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Find :
`∫(log x)^2 dx`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
`int logx/(1 + logx)^2 "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
`int cot "x".log [log (sin "x")] "dx"` = ____________.
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
`int 1/sqrt(x^2 - a^2)dx` = ______.
`int_0^1 x tan^-1 x dx` = ______.
`int1/sqrt(x^2 - a^2) dx` = ______
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`int x^3 e^(x^2) dx`