Advertisements
Advertisements
प्रश्न
`int logx/(1 + logx)^2 "d"x`
उत्तर
Let I = `int logx/(1 + logx)^2 "d"x`
Put log x = t
∴ x = et
∴ dx = et dt
∴ I = `int "t"/(1 + "t")^2 "e"^"t" "dt"`
= `int "e"^"t" [(("t" + 1) - 1)/(1 + "t")^2] "dt"`
= `int "e"^"t" [("t" + 1)/(1 + "t")^2 - 1/(1 + "t")^2] "dt"`
= `int "e"^"t" [1/(1 + "t") - 1/(1 + "t")^2] "dt"`
Put f(t) = `1/(1 + "t")`
∴ f'(t) = `(-1)/(1 + "t")^2`
∴ I = `int "e"^"t" ["f"("t") + "f'"("t")] "dt"`
= et f(t) + c
= `"e"^"t"* 1/(1 + "t") + "c"`
∴ I = `x/(1 + logx) + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate : sec3 x w. r. t. x.
Integrate the function in x2 log x.
Integrate the function in `e^x (1/x - 1/x^2)`.
Find :
`∫(log x)^2 dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
`int 1/x "d"x` = ______ + c
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`