Advertisements
Advertisements
प्रश्न
`int x/((x - 1)^2 (x + 2)) "d"x`
उत्तर
Let I = `int x/((x - 1)^2 (x + 2)) "d"x`
Let `x/((x - 1)^2 (x + 2)) = "A"/(x - 1) + "B"/(x - 1)^2 + "C"/((x + 2))`
∴ x = A(x – 1)(x + 2) + B(x + 2) + C(x – 1)2 ......(i)
Putting x = 1 in (i), we get
1 = A(0)(3) + B(3) + C(0)2
∴ 1 = 3B
∴ B = `1/3`
Putting x = 2 in (i), we get
– 2 = A(– 3)(0) + B(0) + C(9)
∴ – 2 = 9C
∴ C = `-2/9`
Putting x = – 1 in (i), we get
– 1 = A(– 2)(1) + B(1) + C(4)
∴ – 1 = `-2"A" + 1/3 - 8/9`
∴ – 1 = `-2"A" - 5/9`
∴ 2A = `-5/9 + 1 = 4/9`
∴ A = `2/9`
∴ `x/((x - 1)^2(x + 2)) = (2/9)/(x - 1) + (1/3)/(x - 1)^2 + ((-2/9))/(x + 2)`
∴ I = `int[(2/9)/(x - 1) + (1/3)/(x - 1)^2 + ((-2/9))/(x + 2)] "d"x`
= `2/9 int 1/(x - 1) "d"x + 1/3int(x - 1)^(-2) "d"x - 2/9 int 1/(x + 2) "d"x`
= `2/9 log|x - 1| + 1/3*((x - 1)^(-1))/(-1) - 2/9 log|x + 2| + "c"`
= `2/9 log|x - 1| - 2/9 log|x + 2| - 1/3 xx 1/((x - 1)) + "c"`
∴ I = `2/9 log|(x - 1)/(x + 2)| - 1/(3(x - 1)) + "c"`
संबंधित प्रश्न
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`2/((1-x)(1+x^2))`
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int 1/(2 + cosx - sinx) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
Evaluate`int(5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`