मराठी

Integrate the rational function: 1x2-9 - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the rational function:

`1/(x^2 - 9)`

बेरीज

उत्तर

Let `1/(x^2 - 9) = 1/((x - 3)(x + 3))`

`= A/(x - 3) + B/(x + 3)`

⇒ 1 ≡ A(x + 3) + B(x - 3)

Put x = 3

1 = A (3 + 3)

⇒ A `= 1/6`

again, put x = -3

1 = B(3 - 3)

⇒ B `= -1/6`

`therefore 1/(x^2 - 9) = 1/6 [1/(x - 3) - 1/(x + 3)]`

`=> int 1/(x^2 - 9) = 1/6 int (1/(x - 3) - 1/(x + 3))` dx

`= 1/6 [log  abs (x - 3) - log  abs (x + 3)] + C`

`= 1/6  log abs ((x - 3)/(x + 3)) + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.5 [पृष्ठ ३२२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.5 | Q 2 | पृष्ठ ३२२

संबंधित प्रश्‍न

Integrate the rational function:

`(3x - 1)/((x - 1)(x - 2)(x - 3))`


Integrate the rational function:

`(2x)/(x^2 + 3x + 2)`


Integrate the rational function:

`(1 - x^2)/(x(1-2x))`


Integrate the rational function:

`2/((1-x)(1+x^2))`


Integrate the rational function:

`(2x)/((x^2 + 1)(x^2 + 3))`


Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`


Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`


Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`


Integrate the following w.r.t.x:

`x^2/((x - 1)(3x - 1)(3x - 2)`


Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx


Evaluate: `int 1/("x"("x"^5 + 1))` dx


Evaluate: `int 1/("x"("x"^"n" + 1))` dx


Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx


`int (sinx)/(sin3x)  "d"x`


`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`


`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)  "d"x`


`int (x + sinx)/(1 - cosx)  "d"x`


Evaluate:

`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`


`int 1/(sinx(3 + 2cosx))  "d"x`


`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5)  "d"x`


Choose the correct alternative:

`int sqrt(1 + x)  "d"x` =


`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c


If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c


Evaluate `int x log x  "d"x`


Verify the following using the concept of integration as an antiderivative

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


Evaluate the following:

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`


`int 1/(x^2 + 1)^2 dx` = ______.


If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.


If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1  x/2 + B tan^-1(x/3) + C`, then A – B = ______.


Evaluate`int(5x^2-6x+3)/(2x-3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×