मराठी

Find: ∫x2(x2+1)(3x2+4)dx - Mathematics

Advertisements
Advertisements

प्रश्न

Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`

बेरीज

उत्तर

Let I = `int x^2/((x^2 + 1)(3x^2 + 4))dx`

Put t = x2

`t/((t + 1)(3t + 4)) = A/(t + 1) + B/(3t + 4)`

t = A(3t + 4) + B(t + 1)

t = (3A + B)t + (4A + B)

On comparing both sides, we get

3A + B = 1 and 4A + B = 0

∴ I = `int (-1)/(x^2 + 1)dx + int (-4)/(3x^2 + 4)dx`

= `-int 1/(x^2 + 1)dx - 4int 1/(3x^2 + 4)dx`

= `-int 1/(x^2 + 1^2)dx - 4int 1/((sqrt(3)x)^2 + 2^2)dx`

= `(-1)/1 tan^-1 (x/2) - 4/(2sqrt(3)) tan^-1  ((sqrt(3)x)/2) + C`

= `-tan^-1x - 2/sqrt(3) tan^-1 ((sqrt(3)x)/2) + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2021-2022 (April) Term 2 - Outside Delhi Set 1

संबंधित प्रश्‍न

Find : `int x^2/(x^4+x^2-2) dx`


Evaluate:

`int x^2/(x^4+x^2-2)dx`


Integrate the rational function:

`x/((x^2+1)(x - 1))`


Integrate the rational function:

`(2x)/((x^2 + 1)(x^2 + 3))`


Integrate the rational function:

`1/(x(x^4 - 1))`


`int (dx)/(x(x^2 + 1))` equals:


Evaluate : `∫(x+1)/((x+2)(x+3))dx`


Find : 

`∫ sin(x-a)/sin(x+a)dx`


Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`


Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`


Choose the correct options from the given alternatives :

If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =


Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`


Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`


Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx


Evaluate: `int 1/("x"("x"^5 + 1))` dx


Evaluate: `int 1/("x"("x"^"n" + 1))` dx


Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx


`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`


`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`


`int (sinx)/(sin3x)  "d"x`


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


`int x sin2x cos5x  "d"x`


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


Evaluate `int x^2"e"^(4x)  "d"x`


Evaluate the following:

`int sqrt(tanx)  "d"x`  (Hint: Put tanx = t2)


Evaluate:

`int(2x^3 - 1)/(x^4 + x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×