Advertisements
Advertisements
प्रश्न
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
उत्तर
Let I = `int x^2/((x^2 + 1)(3x^2 + 4))dx`
Put t = x2
`t/((t + 1)(3t + 4)) = A/(t + 1) + B/(3t + 4)`
t = A(3t + 4) + B(t + 1)
t = (3A + B)t + (4A + B)
On comparing both sides, we get
3A + B = 1 and 4A + B = 0
∴ I = `int (-1)/(x^2 + 1)dx + int (-4)/(3x^2 + 4)dx`
= `-int 1/(x^2 + 1)dx - 4int 1/(3x^2 + 4)dx`
= `-int 1/(x^2 + 1^2)dx - 4int 1/((sqrt(3)x)^2 + 2^2)dx`
= `(-1)/1 tan^-1 (x/2) - 4/(2sqrt(3)) tan^-1 ((sqrt(3)x)/2) + C`
= `-tan^-1x - 2/sqrt(3) tan^-1 ((sqrt(3)x)/2) + C`
संबंधित प्रश्न
Find : `int x^2/(x^4+x^2-2) dx`
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
Integrate the rational function:
`1/(x(x^4 - 1))`
`int (dx)/(x(x^2 + 1))` equals:
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int 1/("x"("x"^5 + 1))` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int (sinx)/(sin3x) "d"x`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int x sin2x cos5x "d"x`
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
Evaluate `int x^2"e"^(4x) "d"x`
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
Evaluate:
`int(2x^3 - 1)/(x^4 + x)dx`