मराठी

∫dxx(x2+1) equals: - Mathematics

Advertisements
Advertisements

प्रश्न

`int (dx)/(x(x^2 + 1))` equals:

पर्याय

  • `log |x| - 1/2 log |x^2 + 1| + C`

  • `log |x| + 1/2 log |x^2 + 1| + C`

  • `- log |x| + 1/2 log |x^2 + 1| + C`

  • `1/2 log |x| + log (x^2 + 1) + C`

MCQ

उत्तर

`log |x| - 1/2 log |x^2 + 1| + C`

Explanation:

Let `I = int dx/(x (x^2 + 1))`

`= int x/(x (x^2 + 1))  dx`

Put x2 = t

2x dx = dt

`I = 1/2 int (2x  dx)/(x (x^2 + 1))`

`= 1/2 int dt/(t (t + 1))`

Now, `1/(t (t + 1)) = A/t + B/(t + 1)`

1 = A(t + 1) + Bt

Putting t = 0, 1 = A

∴ A = 1

Putting t = -1, 1 = B(-1)

∴ B = -1

`therefore 1/(t (t + 1)) = 1/t - 1/(t + 1)`

`therefore 1/2 int 1/(t (t + 1))  dt = 1/2 int 1/t dt - 1/2 int 1/(t + 1)  dt`

`= 1/2  log abs t - 1/2  log abs (t + 1) + C`

`= 1/2  log abs (x ^2) - 1/2  log abs(x ^2 + 1) + C`

`= log abs x - 1/2  log abs(x^2 + 1) + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.5 [पृष्ठ ३२३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.5 | Q 23 | पृष्ठ ३२३

संबंधित प्रश्‍न

Evaluate:

`int x^2/(x^4+x^2-2)dx`


Integrate the rational function:

`(3x - 1)/((x - 1)(x - 2)(x - 3))`


Integrate the rational function:

`x/((x^2+1)(x - 1))`


Integrate the rational function:

`(5x)/((x + 1)(x^2 - 4))`


Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`


Find : 

`∫ sin(x-a)/sin(x+a)dx`


Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`


Integrate the following w.r.t. x:

`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`


Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`


Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`


Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`


Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx


Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx


`int 1/(x(x^3 - 1)) "d"x`


`int sqrt((9 + x)/(9 - x))  "d"x`


`int 1/(2 +  cosx - sinx)  "d"x`


`int sec^3x  "d"x`


`int sin(logx)  "d"x`


`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`


`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)  "d"x`


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


`int x^3tan^(-1)x  "d"x`


`int xcos^3x  "d"x`


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


`int 1/x^3 [log x^x]^2  "d"x` = p(log x)3 + c Then p = ______


`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5)  "dt"`


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)


Evaluate`int(5x^2-6x+3)/(2x-3)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×