Advertisements
Advertisements
प्रश्न
`int (dx)/(x(x^2 + 1))` equals:
पर्याय
`log |x| - 1/2 log |x^2 + 1| + C`
`log |x| + 1/2 log |x^2 + 1| + C`
`- log |x| + 1/2 log |x^2 + 1| + C`
`1/2 log |x| + log (x^2 + 1) + C`
उत्तर
`log |x| - 1/2 log |x^2 + 1| + C`
Explanation:
Let `I = int dx/(x (x^2 + 1))`
`= int x/(x (x^2 + 1)) dx`
Put x2 = t
2x dx = dt
`I = 1/2 int (2x dx)/(x (x^2 + 1))`
`= 1/2 int dt/(t (t + 1))`
Now, `1/(t (t + 1)) = A/t + B/(t + 1)`
1 = A(t + 1) + Bt
Putting t = 0, 1 = A
∴ A = 1
Putting t = -1, 1 = B(-1)
∴ B = -1
`therefore 1/(t (t + 1)) = 1/t - 1/(t + 1)`
`therefore 1/2 int 1/(t (t + 1)) dt = 1/2 int 1/t dt - 1/2 int 1/(t + 1) dt`
`= 1/2 log abs t - 1/2 log abs (t + 1) + C`
`= 1/2 log abs (x ^2) - 1/2 log abs(x ^2 + 1) + C`
`= log abs x - 1/2 log abs(x^2 + 1) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int 1/(x(x^3 - 1)) "d"x`
`int sqrt((9 + x)/(9 - x)) "d"x`
`int 1/(2 + cosx - sinx) "d"x`
`int sec^3x "d"x`
`int sin(logx) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int x^3tan^(-1)x "d"x`
`int xcos^3x "d"x`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
Evaluate`int(5x^2-6x+3)/(2x-3)dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`