Advertisements
Advertisements
प्रश्न
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
उत्तर
Let I = `int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
Let 3e2t + 5 = `"A"(4"e"^(2"t") - 5) + "B" "d"/"dt"(4"e"^(2"t") - 5)`
= 4Ae2t – 5A + B(8e2t)
∴ 3e2t + 5 = (4A + 8B) e2t – 5A
Comparing the coefficients of e2t and constant term on both sides,
we get 4A + 8B = 3 and – 5A = 5
Solving these equations,
we get A = – 1 and B = `7/8`
∴ I = `int (-1(4"e"^(2"t") - 5) + 7/8(8"e"^(2"t")))/(4"e"^(2"t") - 5) "dt"`
= `/int "dt" + 7/8 int (8"e"^(2"t"))/(4"e"^(2"t") - 5) "dt"`
∴ I = `-"t" + 7/8 log|4"e"^(2"t") - 5| + "c"` ......`[because int ("f'"(x))/("f"(x)) "d"x = log|"f"(x)| + "c"]`
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`2/((1-x)(1+x^2))`
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
`int x^2sqrt("a"^2 - x^6) "d"x`
`int sqrt(4^x(4^x + 4)) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
`int 1/(2 + cosx - sinx) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
`int x/((x - 1)^2 (x + 2)) "d"x`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`