मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

∫ (2logx+3)x(3logx+2)[(logx)2+1] dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int  ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1])  "d"x`

बेरीज

उत्तर

Let I = `int  ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1])  "d"x`

Put log x = t

∴ `1/x  "d"x = dt`

∴ I = `int (2"t" + 3)/((3"t" + 2)("t"^2 + 1))  "dt"`

Let `(2 + 3)/((3"t" + 2)("t"^2 + 1)) = "A"/(3"t" + 2) + ("Bt" + "C")/("t"^2 + 1)`

∴ 2t + 3 = A(t2 + 1) + (Bt + C)(3t + 2)   .........(i)

Putting t = `-2/3` in (i), we get

`2((-2)/3) + 3 = "A"[((-2)/3)^2 + 1]`

∴ `(-4)/3 + 3 = "A"(4/9 + 1)`

∴ `5/3 = "A"(13/9)`

∴ A = `15/13`

Putting t = 0 in (i), we get

3 = A(1) + C(2)

∴ 3 = `15/13 + 2"C"`

∴ `3 - 15/13` = 2C

∴ `24/13` = 2C

∴ C = `12/13`

Putting t = 1 in (i), we get

2 + 3 = A(1 + 1) + (B + C)(3 + 2)

∴ 5 = 2A + 5(B + C)

∴ 5 = `2(15/13) + 5("B" + 12/13)`

∴ 5 = `30/13 + 5"B" + 60/13`

∴ 5B = `5 - 30/13 - 60/13`

∴ 5B = `-25/13`

∴ B = `(-5)/13`

∴ `(2"t" + 3)/((3"t" + 2)("t"^2 + 1)) = (15/13)/(3"t" + 2) + (-5/13 "t" + 12/13)/("t"^2 + 1)`

∴ I = `int((15/13)/(3"t" + 2) + ((-5)/13 "t" + 12/13)/("t"^2 + 1))  "dt"`

= `15/13 int 1/(3"t" + 2)  "dt" - 5/13 int "t"/("t"^2 + 1)  "dt" + 12/13  int 1/("t"^2 + 1)  "dt"`

= `15/13 int 1/(3"t" + 2)  "dt" - 5/13*1/2 int (2"t")/("t"^2 + 1)  "dt" + 12/13 int 1/("t"^2 + 1)  "dt"`

= `15/13* (log|3"t" + 2|)/3 - 5/26 log|"t"^2 + 1| + 12/13 tan^-1 "t" + "c"`

∴ I = `5/13 log |3 log x  2| - 5/26 log |(logx)^2 + 1| + 12/13 tan^-1(logx) + "c"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.3: Indefinite Integration - Long Answers III

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate : `int x^2/((x^2+2)(2x^2+1))dx` 


Find : `int x^2/(x^4+x^2-2) dx`


Evaluate:

`int x^2/(x^4+x^2-2)dx`


Find: `I=intdx/(sinx+sin2x)`


Evaluate: `∫8/((x+2)(x^2+4))dx` 


Integrate the rational function:

`x/((x + 1)(x+ 2))`


Integrate the rational function:

`1/(x^2 - 9)`


Integrate the rational function:

`x/((x^2+1)(x - 1))`


Integrate the rational function:

`(3x + 5)/(x^3 - x^2 - x + 1)`


Integrate the rational function:

`(2x - 3)/((x^2 -1)(2x + 3))`


Integrate the rational function:

`(5x)/((x + 1)(x^2 - 4))`


Integrate the rational function:

`(3x -1)/(x + 2)^2`


Integrate the rational function:

`1/(x^4 - 1)`


Integrate the rational function:

`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]


Integrate the rational function:

`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]


Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`


Integrate the rational function:

`(2x)/((x^2 + 1)(x^2 + 3))`


`int (xdx)/((x - 1)(x - 2))` equals:


Find : 

`∫ sin(x-a)/sin(x+a)dx`


Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`


Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`


Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`


Integrate the following w.r.t. x:

`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`


Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`


Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`


Integrate the following w.r.t. x : `(1)/(x^3 - 1)`


Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`


Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`


Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`


Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`


Integrate the following w.r.t.x:

`x^2/((x - 1)(3x - 1)(3x - 2)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx


Evaluate: `int 1/("x"("x"^5 + 1))` dx


`int "dx"/(("x" - 8)("x" + 7))`=


State whether the following statement is True or False.

If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.


For `int ("x - 1")/("x + 1")^3  "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.


Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx


Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx


`int x^7/(1 + x^4)^2  "d"x`


`int x^2sqrt("a"^2 - x^6)  "d"x`


If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)


`int sqrt((9 + x)/(9 - x))  "d"x`


`int (x^2 + x -1)/(x^2 + x - 6)  "d"x`


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


`int x sin2x cos5x  "d"x`


`int  x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))  "d"x`


Evaluate:

`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`


`int 1/(sinx(3 + 2cosx))  "d"x`


`int xcos^3x  "d"x`


`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5)  "d"x`


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c


State whether the following statement is True or False:

For `int (x - 1)/(x + 1)^3  "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2


Evaluate `int x^2"e"^(4x)  "d"x`


`int x/((x - 1)^2 (x + 2)) "d"x`


If `int(sin2x)/(sin5x  sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______


Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


Evaluate: `int (dx)/(2 + cos x - sin x)`


Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`


If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)


Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.


`int 1/(x^2 + 1)^2 dx` = ______.


If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1  x/2 + B tan^-1(x/3) + C`, then A – B = ______.


Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`


Find: `int x^4/((x - 1)(x^2 + 1))dx`.


Evaluate.

`int (5x^2 - 6x + 3) / (2x -3) dx`


Evaluate:

`int(2x^3 - 1)/(x^4 + x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×