Advertisements
Advertisements
प्रश्न
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
उत्तर
Let I = `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
`= int ("3x" - 1)/(("x - 1")("2x + 1"))` dx
Let `(3"x" - 1)/(("x - 1")("2x" + 1)) = "A"/"x - 1" + "B"/"2x + 1"`
∴ 3x - 1 = A(2x + 1) + B(x - 1) ...(i)
Putting x = 1 in (i), we get
3(1) - 1 = A(2 + 1) + B(0)
∴ 2 = 3A
∴ A = `2/3`
Putting x = `- 1/2` in (i), we get
`3(- 1/2) - 1 = "A"(0) + "B"[- 1/2 - 1]`
∴ `- 5/2 = "B" (- 3/2)`
∴ B = `5/3`
∴ `(3"x" - 1)/(("x" - 1)("2x" + 1)) = (2/3)/("x - 1") + (5/3)/("2x + 1")`
∴ I = `int ((2/3)/("x - 1") + (5/3)/("2x" + 1))` dx
`= 2/3 int 1/("x - 1") "dx" + 5/3 int 1/("2x + 1")`dx
∴ I = `2/3 log |"x - 1"| + 5/3 (log |("2x" + 1)|)/2` + c
APPEARS IN
संबंधित प्रश्न
Find : `int x^2/(x^4+x^2-2) dx`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Evaluate: `int 1/("x"("x"^5 + 1))` dx
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int 1/(2 + cosx - sinx) "d"x`
`int ("d"x)/(2 + 3tanx)`
`int x^3tan^(-1)x "d"x`
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`