मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

∫dx2+3tanx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int ("d"x)/(2 + 3tanx)`

बेरीज

उत्तर

Let I = `int 1/(2 + 3tanx)  "d"x`

= `int 1/(2 + 3(sinx/cosx))  "d"x`

= `int  cosx/(2cosx + 3sinx)  "d"x`

Let cos x = `"A"(2cosx + 3 sinx) + "B""d"/("d"x) (2cosx + 3sinx)`

= A(2cos x + 3sin x) + B(−2sin x + 3cos x)

∴ cos x + 0⋅sinx = cosx (2A + 3B) + sinx (3A − 2B)

By equating the coefficients on both sides, we get

2A + 3B = 1 and 3A − 2B = 0

Solving these equations, we get

A = `2/13` and B = `3/13`

∴ cos x = `2/13 (2 cos x + 3 sin x) + 3/13 (-2 sin x + 3 cos x)`

∴ I = `int (2/13(2cos x + 3sin x) + 3/13(-2 sinx + 3cos x))/(2cosx + 3sin x)  "d"x`

∴ I = `2/13 int "d"x + 3/13 int (-2sinx + 3cosx)/(2cosx + 3sinx)  "d"x`

∴ I = `2/13x + 3/13  log  |2cos + 3sinx| + "c"`  ........`[∵ int ("f'"(x))/("f"(x))  "d"x = log  |"f"(x)| + "c"]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.3: Indefinite Integration - Long Answers III

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate : `int x^2/((x^2+2)(2x^2+1))dx` 


Find : `int x^2/(x^4+x^2-2) dx`


Evaluate:

`int x^2/(x^4+x^2-2)dx`


Find: `I=intdx/(sinx+sin2x)`


Evaluate: `∫8/((x+2)(x^2+4))dx` 


Integrate the rational function:

`x/((x + 1)(x+ 2))`


Integrate the rational function:

`(3x - 1)/((x - 1)(x - 2)(x - 3))`


Integrate the rational function:

`x/((x-1)(x- 2)(x - 3))`


Integrate the rational function:

`x/((x^2+1)(x - 1))`


Integrate the rational function:

`1/(x^4 - 1)`


Integrate the rational function:

`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]


Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`


Integrate the rational function:

`1/(x(x^4 - 1))`


`int (dx)/(x(x^2 + 1))` equals:


Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`


Find : 

`∫ sin(x-a)/sin(x+a)dx`


Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`


Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`


Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`


Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`


Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`


Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`


Integrate the following w.r.t.x :  `sec^2x sqrt(7 + 2 tan x - tan^2 x)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`


Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx


Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx


Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx


Evaluate: `int 1/("x"("x"^5 + 1))` dx


Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx


Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx


`int (2x - 7)/sqrt(4x- 1) dx`


`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`


`int x^2sqrt("a"^2 - x^6)  "d"x`


`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`


`int 1/(4x^2 - 20x + 17)  "d"x`


`int (sinx)/(sin3x)  "d"x`


`int 1/(2 +  cosx - sinx)  "d"x`


`int sec^3x  "d"x`


`int sec^2x sqrt(tan^2x + tanx - 7)  "d"x`


`int "e"^x ((1 + x^2))/(1 + x)^2  "d"x`


`int (x^2 + x -1)/(x^2 + x - 6)  "d"x`


`int 1/(sinx(3 + 2cosx))  "d"x`


`int xcos^3x  "d"x`


`int (sin2x)/(3sin^4x - 4sin^2x + 1)  "d"x`


`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5)  "d"x`


`int  ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1])  "d"x`


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


State whether the following statement is True or False:

For `int (x - 1)/(x + 1)^3  "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2


Evaluate `int (2"e"^x + 5)/(2"e"^x + 1)  "d"x`


`int x/((x - 1)^2 (x + 2)) "d"x`


If `int(sin2x)/(sin5x  sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


Evaluate the following:

`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`


Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`


Evaluate the following:

`int sqrt(tanx)  "d"x`  (Hint: Put tanx = t2)


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`


Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.


If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1  x/2 + B tan^-1(x/3) + C`, then A – B = ______.


Evaluate:

`int x/((x + 2)(x - 1)^2)dx`


Evaluate.

`int (5x^2 - 6x + 3) / (2x -3) dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×