Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
उत्तर
Let I = `int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
Resolving into partial fraction, we put
`(2x - 1)/((x - 1)(x + 2)(x - 3)) = "A"/(x - 1) + "B"/(x + 2) + "C"/(x - 3)`
⇒ 2x – 1 = A(x + 2)(x – 3) + B(x – 1)(x – 3) + C(x – 1)(x + 2)
Put x = 1
1 = A(3)(– 2)
⇒ A = `-1/6`
Put x = – 2
– 5 = B(– 3)(– 5)
⇒ B = `- 1/3`
Put x = 3
5 = C(2)(5)
⇒ C = `1/2`
∴ `int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x = - 1/6 int 1/(x - 1) "d"x - 1/3 int 1/(x + 2) "d"x + 1/2 int 1/(x - 3) "d"x`
= `- 1/6 log |x - 1| - 1/3 log|x + 2| + 1/2 log|x - 3| + "C"`
= `- log|x - 1|^(1/6) - log(x + 2)^(1/3) + log(x - 3)^(1/3) + "C"`
Hence, `int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x = log[sqrt(x - 3)/((x - 1)^(1/6) (x + 2)^(1/3))] + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int x^2/((x^2+2)(2x^2+1))dx`
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
`int (dx)/(x(x^2 + 1))` equals:
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
`int ("d"x)/(2 + 3tanx)`
`int xcos^3x "d"x`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
Evaluate `int x^2"e"^(4x) "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Find: `int x^4/((x - 1)(x^2 + 1))dx`.
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`