मराठी

Integrate the rational function: 1ex-1[Hint: Put ex = t] - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the rational function:

`1/(e^x -1)`[Hint: Put ex = t]

बेरीज

उत्तर

Let `I = int 1/ (e^x - 1)  dx`

Put ex = t

⇒ ex dx = dt

⇒ `dx = dt/t`

∴ `I = int dt/ (t (t - 1))`

Let `1/ (t (t - 1)) = A/t + B/ (t - 1)`

⇒ 1 = A (t - 1) + Bt                        .....(i)

Putting t = 1 in (i), we get 

B = 1

Putting t = 0 in (i), we get

1 = A (0 - 1) + B (0)

⇒  A = -1

∴ `1/ (t (t - 1)) = (-1)/t + 1/ (t - 1)`

∴ `I = int (-1/t + 1/ (t - 1))  dt`

= - log |t| + log |t - 1| + C

= - log |ex| + log |ex - 1| + C

`= log  ((e^x - 1)/e^x) +C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.5 [पृष्ठ ३२३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.5 | Q 21 | पृष्ठ ३२३

संबंधित प्रश्‍न

Evaluate:

`int x^2/(x^4+x^2-2)dx`


Integrate the rational function:

`x/((x + 1)(x+ 2))`


Integrate the rational function:

`(3x - 1)/((x - 1)(x - 2)(x - 3))`


Integrate the rational function:

`(2x)/(x^2 + 3x + 2)`


Integrate the rational function:

`(x^3 + x + 1)/(x^2 -1)`


Integrate the rational function:

`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]


Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`


Evaluate : `∫(x+1)/((x+2)(x+3))dx`


Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`


Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`


Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`


Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`


Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`


Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`


Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`


Integrate the following w.r.t.x :  `sec^2x sqrt(7 + 2 tan x - tan^2 x)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx


Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx


`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`


`int 1/(4x^2 - 20x + 17)  "d"x`


`int 1/(2 +  cosx - sinx)  "d"x`


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


`int  x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))  "d"x`


`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5)  "d"x`


`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c


Evaluate `int x log x  "d"x`


If `int(sin2x)/(sin5x  sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______


Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.


If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.


Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`


Find: `int x^4/((x - 1)(x^2 + 1))dx`.


Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.


Evaluate: 

`int 2/((1 - x)(1 + x^2))dx`


Evaluate:

`int x/((x + 2)(x - 1)^2)dx`


Evaluate.

`int (5x^2 - 6x + 3) / (2x -3) dx`


Evaluate:

`int (x + 7)/(x^2 + 4x + 7)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×