Advertisements
Advertisements
प्रश्न
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
उत्तर
Let `sin x = t => cos x dx = dt`
`int (2dt)/((1-t)(1+t^2))`
Using partial fraction
`2/((1-t)(1+t^2)) = A/((1-t)) + (Bt + C)/((1+t^2))`
On solving A = 1, B =1, C = 1
`int (2dt)/((1-t)(1+t^2)) = int (dt)/((1-t)) + int ((1+t))/((1+t^2)) dt`
`= int (dt)/((1-t)) + int (dt)/(1+t^2) + int (tdt)/((1+t^2))`
`= -In (1-t) + tan^(-1) t + 1/2 In (1+t^2)`
`= In sqrt(1+t^2)/(1-t) + tan^(-1) t + C`
Replacing the value of t
`= In sqrt(1+sin^2x)/(1-sinx) + tan^(-1)(sin x) + C`
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int 1/(2 + cosx - sinx) "d"x`
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int x sin2x cos5x "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
`int xcos^3x "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
`int 1/(x^2 + 1)^2 dx` = ______.
Evaluate`int(5x^2-6x+3)/(2x-3)dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`