मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Integrate the following w.r.t. x : 5x2+20x+6x3+2x2+x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`

बेरीज

उत्तर

Let I = `int (5x^2 + 20x + 6)/(x^3 + 2x^2 + x)*dx`

= `int (5x^2 + 20x + 6)/(x(x^2 + 2x + 1))*dx`

= `int (5x^2 + 20x + 6)/(x(x + 1)^2)*dx`

Let `(5x^2 + 20x + 6)/(x(x + 1)^2) = "A"/x + "B"/(x + 1) + "C"/(x + 1)^2`

∴ 5x2 + 20x + 6  = A(x + 1)2 + Bx(x + 1) + Cx
Put x = 0, we get
0 + 0 + 6 = A(1) + B(0)(1) + C(0)
∴ A = 6
Put x + 1 = 0, i  x = – 1, we get
5(1) + 20(– 1) + 6 = A(0) + B(– 1)(0) + C(– 1)
∴ – 9 = – C
∴ C = 9
Put x = 1, we get
5(1) + 20(1) + 6 = A(4) + B(1)(2) + C(1)
But A = 6 and C = 9
∴ 31 = 24 + 2B + 9
∴ B = – 1

∴ `(5x^2 + 20x + 6)/(x(x + 1)^2) = 6/x - (1)/(x + 1) + (9)/(x + 1)^2`

∴ I = `int[6/x - (1)/(x + 1) + 9/(x + 1)^2]*dx`

= `6 int 1/x*dx - int 1/(x + 1)*dx + 9 int (x + 1)^-2*dx`

= `6log|x| - log|x + 1| + 9*((x + 1)^-1)/(-1) + c`

= `log|x^6| - log|x + 1| - (9)/((x + 1)) + c`

= `log|x^6/(x + 1)| - (9)/((x + 1)) + c`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.4 [पृष्ठ १४५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.4 | Q 1.14 | पृष्ठ १४५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find : `int x^2/(x^4+x^2-2) dx`


Integrate the rational function:

`1/(x^2 - 9)`


Integrate the rational function:

`(1 - x^2)/(x(1-2x))`


Integrate the rational function:

`x/((x^2+1)(x - 1))`


Integrate the rational function:

`(5x)/((x + 1)(x^2 - 4))`


Integrate the rational function:

`(x^3 + x + 1)/(x^2 -1)`


Integrate the rational function:

`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]


Integrate the rational function:

`(2x)/((x^2 + 1)(x^2 + 3))`


Integrate the rational function:

`1/(e^x -1)`[Hint: Put ex = t]


`int (xdx)/((x - 1)(x - 2))` equals:


`int (dx)/(x(x^2 + 1))` equals:


Evaluate : `∫(x+1)/((x+2)(x+3))dx`


Find : 

`∫ sin(x-a)/sin(x+a)dx`


Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`


Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`


Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`


Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`


Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`


Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`


Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`


Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`


Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`


Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx


Evaluate: `int 1/("x"("x"^5 + 1))` dx


Evaluate: `int 1/("x"("x"^"n" + 1))` dx


Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx


`int "dx"/(("x" - 8)("x" + 7))`=


State whether the following statement is True or False.

If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.


For `int ("x - 1")/("x + 1")^3  "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.


Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx


Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx


`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`


`int x^7/(1 + x^4)^2  "d"x`


`int sqrt(4^x(4^x + 4))  "d"x`


`int 1/(2 +  cosx - sinx)  "d"x`


`int sec^3x  "d"x`


`int "e"^x ((1 + x^2))/(1 + x)^2  "d"x`


`int (x^2 + x -1)/(x^2 + x - 6)  "d"x`


`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)  "d"x`


`int ("d"x)/(2 + 3tanx)`


`int (x + sinx)/(1 - cosx)  "d"x`


Evaluate:

`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`


`int  ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1])  "d"x`


Choose the correct alternative:

`int sqrt(1 + x)  "d"x` =


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c


`int 1/x^3 [log x^x]^2  "d"x` = p(log x)3 + c Then p = ______


Evaluate `int x^2"e"^(4x)  "d"x`


If `int(sin2x)/(sin5x  sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______


Verify the following using the concept of integration as an antiderivative

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


Evaluate the following:

`int (x^2"d"x)/(x^4 - x^2 - 12)`


Evaluate the following:

`int_"0"^pi  (x"d"x)/(1 + sin x)`


Evaluate the following:

`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`


Evaluate the following:

`int sqrt(tanx)  "d"x`  (Hint: Put tanx = t2)


Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`


If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.


If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.


Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`


Find: `int x^4/((x - 1)(x^2 + 1))dx`.


Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.


Evaluate`int(5x^2-6x+3)/(2x-3)dx`


Evaluate:

`int (x + 7)/(x^2 + 4x + 7)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×