Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
उत्तर
Let I = `int sqrt(tanx) "d"x`
Put tan x = t2
⇒ sec2x dx = 2t dt
∴ I = `int "t" * (2"t")/(sec^2x) "dt"`
= `2 int "t"^2/(1 + "t"^4) "dt"`
= `int (("t"^2 + 1) + ("t"^2 - 1))/((1 + "t"^4)) "dt"`
= `int ("t"^2 + 1)/(1 + "t"^4) "dt" + int ("t"^2 - 1)/(1 + "t"^4) "dt"`
= `int (1 + 1/"t"^2)/("t"^2 + 1/"t"^2) "dt" + int (1 - 1/"t"^2)/("t"^2 + 1/"t"^2) "dt"`
= `int (1 + 1/"t"^2)/(("t" - 1/"t")^2 + 2)"dt" + int (1 - 1/"t"^2)/(("t" + 1/"t")^2 - 2)"dt"`
Put u = `"t" - 1/"t"`
⇒ du = `(1 + 1/"t"^2)"dt"` in first integral
And put v = `"t" + 1/"t"`
⇒ dv = `(1 - 1/"t"^2)"dt"` in second integral
∴ I = `int "du"/("u"^2 + (sqrt(2)^2)) + int "dv"/("v"^2 - (sqrt(2)^2))`
= `1/sqrt(2) tan^-1 "u"/sqrt(2) + 1/(2sqrt(2)) log|("v" - sqrt(2))/("v" + sqrt(2))| + "C"`
= `1/sqrt(2) tan^-1 ("t" - 1/"t")/sqrt(2) + 1/(2sqrt(2)) log |("t" + 1/"t" - sqrt(2))/("t" + 1/"t" + sqrt(2))| + "C"`
= `1/sqrt(2) tan^-1 ("t"^2 - 1)/(sqrt(2)"t") + 1/(2sqrt(2)) log |("t"^2 + 1 - sqrt(2)"t")/("t"^2 + 1 + sqrt(2)"t")| + "C"`
= `1/sqrt(2) tan^-1 ((tanx - 1)/sqrt(2tan x)) + 1/(2sqrt(2)) log |(tan x - sqrt(2 tanx) + 1)/(tan x + sqrt(2 tan x) + 1)| + "C"`
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
`int (xdx)/((x - 1)(x - 2))` equals:
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int x^7/(1 + x^4)^2 "d"x`
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int sqrt((9 + x)/(9 - x)) "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int x^3tan^(-1)x "d"x`
`int x sin2x cos5x "d"x`
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
Evaluate `int x log x "d"x`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Find: `int x^4/((x - 1)(x^2 + 1))dx`.
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate`int(5x^2-6x+3)/(2x-3)dx`